• 如何线程安全的使用HashMap


    原文出处: Giraffe

    如何在线程安全的前提下使用HashMap,其实也就是HashMapHashtableConcurrentHashMapsynchronized Map的原理和区别。

    HashMap是否是线程安全的:在扩容时可能发生死循环,可能丢失数据 

    Hashtable :线程安全,但效率低,因为是Hashtable是使用synchronized的,所有线程竞争同一把锁;

    ConcurrentHashMap:不仅线程安全而且效率高,因为它包含一个segment数组,将数据分段存储,给每一段数据配一把锁,也就是所谓的锁分段技术。

    synchronized Map:不一定线程安全,在某些时候会出现一些意想不到的结果

     

    为什么HashMap是线程不安全的

    总说HashMap是线程不安全的,不安全的,不安全的,那么到底为什么它是线程不安全的呢?要回答这个问题就要先来简单了解一下HashMap源码中的使用的存储结构(这里引用的是Java 8的源码,与7是不一样的)和它的扩容机制

    HashMap的内部存储结构

    下面是HashMap使用的存储结构:

    1
    2
    3
    4
    5
    6
    7
    8
    transient Node<K,V>[] table;
     
    static class Node<K,V> implements Map.Entry<K,V> {
            final int hash;
            final K key;
            V value;
            Node<K,V> next;
    }

    可以看到HashMap内部存储使用了一个Node数组(默认大小是16),而Node类包含一个类型为Node的next的变量,也就是相当于一个链表,所有hash值相同(即产生了冲突)的key会存储到同一个链表里,大概就是下面图的样子(顺便推荐个在线画图的网站Creately)。
    HashMap内部存储结果HashMap内部存储结果

    需要注意的是,在Java 8中如果hash值相同的key数量大于指定值(默认是8)时使用平衡树来代替链表,这会将get()方法的性能从O(n)提高到O(logn)。具体的可以看我的另一篇博客Java 8中HashMap和LinkedHashMap如何解决冲突

    HashMap的自动扩容机制

    HashMap内部的Node数组默认的大小是16,假设有100万个元素,那么最好的情况下每个hash桶里都有62500个元素,这时get(),put(),remove()等方法效率都会降低。为了解决这个问题,HashMap提供了自动扩容机制,当元素个数达到数组大小loadFactor后会扩大数组的大小,在默认情况下,数组大小为16,loadFactor为0.75,也就是说当HashMap中的元素超过160.75=12时,会把数组大小扩展为2*16=32,并且重新计算每个元素在新数组中的位置。如下图所示(图片来源,权侵删)。
    自动扩容

    自动扩容

    从图中可以看到没扩容前,获取EntryE需要遍历5个元素,扩容之后只需要2次。

    为什么线程不安全

    个人觉得HashMap在并发时可能出现的问题主要是两方面,首先如果多个线程同时使用put方法添加元素,而且假设正好存在两个put的key发生了碰撞(hash值一样),那么根据HashMap的实现,这两个key会添加到数组的同一个位置,这样最终就会发生其中一个线程的put的数据被覆盖。第二就是如果多个线程同时检测到元素个数超过数组大小*loadFactor,这样就会发生多个线程同时对Node数组进行扩容,都在重新计算元素位置以及复制数据,但是最终只有一个线程扩容后的数组会赋给table,也就是说其他线程的都会丢失,并且各自线程put的数据也丢失。
    关于HashMap线程不安全这一点,《Java并发编程的艺术》一书中是这样说的:

    HashMap在并发执行put操作时会引起死循环,导致CPU利用率接近100%。因为多线程会导致HashMap的Node链表形成环形数据结构,一旦形成环形数据结构,Node的next节点永远不为空,就会在获取Node时产生死循环。

    哇塞,听上去si不si好神奇,居然会产生死循环。。。。google了一下,才知道死循环并不是发生在put操作时,而是发生在扩容时。详细的解释可以看下面几篇博客:

    如何线程安全的使用HashMap

    了解了HashMap为什么线程不安全,那现在看看如何线程安全的使用HashMap。这个无非就是以下三种方式:

    • Hashtable
    • ConcurrentHashMap
    • Synchronized Map

    例子:

    1
    2
    3
    4
    5
    6
    7
    8
    //Hashtable
    Map<String, String> hashtable = new Hashtable<>();
     
    //synchronizedMap
    Map<String, String> synchronizedHashMap = Collections.synchronizedMap(new HashMap<String, String>());
     
    //ConcurrentHashMap
    Map<String, String> concurrentHashMap = new ConcurrentHashMap<>();

    依次来看看。

    Hashtable

    先稍微吐槽一下,为啥命名不是HashTable啊,看着好难受,不管了就装作它叫HashTable吧。这货已经不常用了,就简单说说吧。HashTable源码中是使用synchronized来保证线程安全的,比如下面的get方法和put方法:

    1
    2
    3
    4
    5
    6
    public synchronized V get(Object key) {
           // 省略实现
        }
    public synchronized V put(K key, V value) {
        // 省略实现
        }

    所以当一个线程访问HashTable的同步方法时,其他线程如果也要访问同步方法,会被阻塞住。举个例子,当一个线程使用put方法时,另一个线程不但不可以使用put方法,连get方法都不可以,好霸道啊!!!so~~,效率很低,现在基本不会选择它了。

    ConcurrentHashMap

    ConcurrentHashMap(以下简称CHM)是JUC包中的一个类,Spring的源码中有很多使用CHM的地方。之前已经翻译过一篇关于ConcurrentHashMap的博客,如何在java中使用ConcurrentHashMap,里面介绍了CHM在Java中的实现,CHM的一些重要特性和什么情况下应该使用CHM。需要注意的是,上面博客是基于Java 7的,和8有区别,在8中CHM摒弃了Segment(锁段)的概念,而是启用了一种全新的方式实现,利用CAS算法,有时间会重新总结一下。

    SynchronizedMap

    看了一下源码,SynchronizedMap的实现还是很简单的。

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    // synchronizedMap方法
    public static <K,V> Map<K,V> synchronizedMap(Map<K,V> m) {
           return new SynchronizedMap<>(m);
       }
    // SynchronizedMap类
    private static class SynchronizedMap<K,V>
           implements Map<K,V>, Serializable {
           private static final long serialVersionUID = 1978198479659022715L;
     
           private final Map<K,V> m;     // Backing Map
           final Object      mutex;        // Object on which to synchronize
     
           SynchronizedMap(Map<K,V> m) {
               this.m = Objects.requireNonNull(m);
               mutex = this;
           }
     
           SynchronizedMap(Map<K,V> m, Object mutex) {
               this.m = m;
               this.mutex = mutex;
           }
     
           public int size() {
               synchronized (mutex) {return m.size();}
           }
           public boolean isEmpty() {
               synchronized (mutex) {return m.isEmpty();}
           }
           public boolean containsKey(Object key) {
               synchronized (mutex) {return m.containsKey(key);}
           }
           public boolean containsValue(Object value) {
               synchronized (mutex) {return m.containsValue(value);}
           }
           public V get(Object key) {
               synchronized (mutex) {return m.get(key);}
           }
     
           public V put(K key, V value) {
               synchronized (mutex) {return m.put(key, value);}
           }
           public V remove(Object key) {
               synchronized (mutex) {return m.remove(key);}
           }
           // 省略其他方法
       }

    从源码中可以看出调用synchronizedMap()方法后会返回一个SynchronizedMap类的对象,而在SynchronizedMap类中使用了synchronized同步关键字来保证对Map的操作是线程安全的。

    性能对比

    这是要靠数据说话的时代,所以不能只靠嘴说CHM快,它就快了。写个测试用例,实际的比较一下这三种方式的效率(源码来源),下面的代码分别通过三种方式创建Map对象,使用ExecutorService来并发运行5个线程,每个线程添加/获取500K个元素。

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    public class CrunchifyConcurrentHashMapVsSynchronizedMap {
     
        public final static int THREAD_POOL_SIZE = 5;
     
        public static Map<String, Integer> crunchifyHashTableObject = null;
        public static Map<String, Integer> crunchifySynchronizedMapObject = null;
        public static Map<String, Integer> crunchifyConcurrentHashMapObject = null;
     
        public static void main(String[] args) throws InterruptedException {
     
            // Test with Hashtable Object
            crunchifyHashTableObject = new Hashtable<>();
            crunchifyPerformTest(crunchifyHashTableObject);
     
            // Test with synchronizedMap Object
            crunchifySynchronizedMapObject = Collections.synchronizedMap(new HashMap<String, Integer>());
            crunchifyPerformTest(crunchifySynchronizedMapObject);
     
            // Test with ConcurrentHashMap Object
            crunchifyConcurrentHashMapObject = new ConcurrentHashMap<>();
            crunchifyPerformTest(crunchifyConcurrentHashMapObject);
     
        }
     
        public static void crunchifyPerformTest(final Map<String, Integer> crunchifyThreads) throws InterruptedException {
     
            System.out.println("Test started for: " + crunchifyThreads.getClass());
            long averageTime = 0;
            for (int i = 0; i < 5; i++) {
     
                long startTime = System.nanoTime();
                ExecutorService crunchifyExServer = Executors.newFixedThreadPool(THREAD_POOL_SIZE);
     
                for (int j = 0; j < THREAD_POOL_SIZE; j++) {
                    crunchifyExServer.execute(new Runnable() {
                        @SuppressWarnings("unused")
                        @Override
                        public void run() {
     
                            for (int i = 0; i < 500000; i++) {
                                Integer crunchifyRandomNumber = (int) Math.ceil(Math.random() * 550000);
     
                                // Retrieve value. We are not using it anywhere
                                Integer crunchifyValue = crunchifyThreads.get(String.valueOf(crunchifyRandomNumber));
     
                                // Put value
                                crunchifyThreads.put(String.valueOf(crunchifyRandomNumber), crunchifyRandomNumber);
                            }
                        }
                    });
                }
     
                // Make sure executor stops
                crunchifyExServer.shutdown();
     
                // Blocks until all tasks have completed execution after a shutdown request
                crunchifyExServer.awaitTermination(Long.MAX_VALUE, TimeUnit.DAYS);
     
                long entTime = System.nanoTime();
                long totalTime = (entTime - startTime) / 1000000L;
                averageTime += totalTime;
                System.out.println("2500K entried added/retrieved in " + totalTime + " ms");
            }
            System.out.println("For " + crunchifyThreads.getClass() + " the average time is " + averageTime / 5 + " ms ");
        }
    }

    测试结果:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    Test started for: class java.util.Hashtable
    2500K entried added/retrieved in 2018 ms
    2500K entried added/retrieved in 1746 ms
    2500K entried added/retrieved in 1806 ms
    2500K entried added/retrieved in 1801 ms
    2500K entried added/retrieved in 1804 ms
    For class java.util.Hashtable the average time is 1835 ms
     
    Test started for: class java.util.Collections$SynchronizedMap
    2500K entried added/retrieved in 3041 ms
    2500K entried added/retrieved in 1690 ms
    2500K entried added/retrieved in 1740 ms
    2500K entried added/retrieved in 1649 ms
    2500K entried added/retrieved in 1696 ms
    For class java.util.Collections$SynchronizedMap the average time is 1963 ms
     
    Test started for: class java.util.concurrent.ConcurrentHashMap
    2500K entried added/retrieved in 738 ms
    2500K entried added/retrieved in 696 ms
    2500K entried added/retrieved in 548 ms
    2500K entried added/retrieved in 1447 ms
    2500K entried added/retrieved in 531 ms
    For class java.util.concurrent.ConcurrentHashMap the average time is 792 ms

    这个就不用废话了,CHM性能是明显优于Hashtable和SynchronizedMap的,CHM花费的时间比前两个的一半还少,哈哈,以后再有人问就可以甩数据了。

     SynchronizedMap

    Collections为HashMap提供了一个并发版本SynchronizedMap。这个版本中的方法都进行了同步,但是这并不等于这个类就一定是线程安全的。在某些时候会出现一些意想不到的结果。

    如下面这段代码:

    Java代码
    1. // shm是SynchronizedMap的一个实例  
    2. if(shm.containsKey('key')){  
    3.         shm.remove(key);  
    4. }  
    // shm是SynchronizedMap的一个实例 if(shm.containsKey('key')){         shm.remove(key); } 

     这段代码用于从map中删除一个元素之前判断是否存在这个元素。这里的containsKey和reomve方法都是同步的,但是整段代码却不是。考虑这么一个使用场景:线程A执行了containsKey方法返回true,准备执行remove操作;这时另一个线程B开始执行,同样执行了containsKey方法返回true,并接着执行了remove操作;然后线程A接着执行remove操作时发现此时已经没有这个元素了。要保证这段代码按我们的意愿工作,一个办法就是对这段代码进行同步控制,但是这么做付出的代价太大。

    3. 并发情况下更好的选择:ConcurrentHashMap

    效率低下的HashTable容器

    HashTable容器使用synchronized来保证线程安全,但在线程竞争激烈的情况下HashTable的效率非常低下。因为当一个线程访问HashTable的同步方法时,其他线程访问HashTable的同步方法时,可能会进入阻塞或轮询状态。如线程1使用put进行添加元素,线程2不但不能使用put方法添加元素,并且也不能使用get方法来获取元素,所以竞争越激烈效率越低。

    锁分段技术

    HashTable容器在竞争激烈的并发环境下表现出效率低下的原因是所有访问HashTable的线程都必须竞争同一把锁,那假如容器里有多把锁,每一把锁用于锁容器其中一部分数据,那么当多线程访问容器里不同数据段的数据时,线程间就不会存在锁竞争,从而可以有效的提高并发访问效率,这就是ConcurrentHashMap所使用的锁分段技术,首先将数据分成一段一段的存储,然后给每一段数据配一把锁,当一个线程占用锁访问其中一个段数据的时候,其他段的数据也能被其他线程访问。

     

    java5中新增了ConcurrentMap接口和它的一个实现类ConcurrentHashMap。ConcurrentHashMap提供了和Hashtable以及SynchronizedMap中所不同的锁机制。Hashtable中采用的锁机制是一次锁住整个hash表,从而同一时刻只能由一个线程对其进行操作;而ConcurrentHashMap中则是一次锁住一个桶。ConcurrentHashMap默认将hash表分为16个桶,诸如get,put,remove等常用操作只锁当前需要用到的桶。这样,原来只能一个线程进入,现在却能同时有16个写线程执行,并发性能的提升是显而易见的。

     

    上面说到的16个线程指的是写线程,而读操作大部分时候都不需要用到锁。只有在size等操作时才需要锁住整个hash表。

     

    在迭代方面,ConcurrentHashMap使用了一种不同的迭代方式。在这种迭代方式中,当iterator被创建后集合再发生改变就不再是抛出ConcurrentModificationException,取而代之的是在改变时new新的数据从而不影响原有的数据iterator完成后再将头指针替换为新的数据,这样iterator线程可以使用原来老的数据,而写线程也可以并发的完成改变。

     
     
  • 相关阅读:
    Mac如何删除MySQL,Mac下MySQL卸载方法
    MAC下安装与配置MySQL
    mac+apache+php+phpmyadmin集成php开发环境配置
    打开都是“Smart Adobe CC Blocker v1.0”已损坏,打不开。 您应该将它移到废纸篓。
    PHP 字符串函数
    php基础教程-数据类型
    php基础教程-变量
    php基础教程-语法
    php基础教程-必备基础知识
    有关驾考科目二的相关技巧教程
  • 原文地址:https://www.cnblogs.com/hqlong/p/6802772.html
Copyright © 2020-2023  润新知