• 二叉排序树中节点的查找/插入/删除


      1 #include <stdio.h>
      2 #include<stdlib.h>
      3 #include <conio.h> 
      4 #define ARRAYLEN 11
      5 int source [] = {55,94,6,65,11,38,40,39,91,67,66};
      6 typedef struct bst {
      7     int data;
      8     struct bst *left;
      9     struct bst *right;
     10 }ercha;
     11 
     12 /*
     13     将单个节点插入到二叉树的相应位置 
     14 */
     15 void Inserter (ercha *t ,int key){
     16     ercha *p, *parent, *head;
     17     if(!(p=(ercha *)malloc(sizeof(ercha)))){  //申请一个新节点 
     18         printf("申请的内存出错!");
     19         exit(0);
     20     }
     21     p->data=key;
     22     p->left=p->right=NULL;
     23     head = t;
     24     while(head){
     25         parent=head;
     26         if(key<head->data)  //如果插入值小于当前节点值,则向左遍历 ,否则,向右遍历 
     27             head=head->left;
     28         else
     29             head =head->right;
     30     }
     31     if(key<parent->data)    //找到key值的合适位置后,与其父节点比较,插入适当的位置 
     32         parent->left=p;
     33     else
     34         parent->right=p;
     35 } 
     36 
     37 /*
     38     构造二叉树 
     39 */
     40 void Createer(ercha *t,int data[],int n){
     41     int i;
     42     t->data = data[0];
     43     t->left=t->right=NULL;
     44     for(i=1;i<n;i++){
     45         Inserter(t,data[i]);
     46     }
     47 }
     48 
     49 /*
     50     中序遍历二叉树 
     51 */ 
     52 void BST_LDR(ercha *t){
     53     if(t){
     54         BST_LDR(t->left);
     55         printf("%d ",t->data);
     56         BST_LDR(t->right);
     57     }
     58     return ;
     59 }
     60 
     61 /*
     62     删除二叉树中的节点,分三种大情况: 
     63     
     64     1、 被删除节点没有孩子节点 即删除节点为叶子节点,则直接删除(本文算法加入了一个父节点,有点不一样)
     65     
     66     2、被删除节点只有左子树,或只有右子树,则可以直接将被删的节点的左子树或右子树直接改写为双亲节点的左子树或者右子树 
     67     
     68         (1) 被删节点是父节点的左孩子 ,如果被删节点有左子树或者右子树, 则被删节点的左子树,或者右子树作为父节点的左子树 ;
     69         
     70         (2) 被删节点是符节点的右孩子, 如果被删节点有左子树或者右子树, 则被删节点的左子树,或者右子树作为父节点的左子树 ;
     71     
     72     3、被删除节点既有左子树,也有右子树时有两种方法:
     73         
     74         (1) 首先找到被删节点左子树上最右下角的节点 S(中序序列中被删节点的直接前驱),然后将被删节点的左子树改为其父节点的左子树
     75                 被删节点的右子树改为 S 的右子树。或者首先找到被删除节点在左子树上最右下角的节点S,然后用S的值代替被删除节点的值,
                原S节点的左子树改为S的双亲节点的右子树。
    76
               77 (2) 从删除节点的右子树开始,在删除节点的右子树上找到最左下角 的节点(即中序序列中被删节点的直接后继节点,然后将最左下角 78 的值取代被删节点,最左下角节点的右子树作为最左下角节点父节点的左子树。 79 80 */ 81 82 void Deleteer(ercha *t,int key){ 83 ercha *p, *parent , *l,*l1; 84 bool flag =false; 85 int child =0; 86 if(!t) 87 return ; 88 p=t; 89 parent=p; 90 while(p){ 91 if(p->data==key){ 92 if(!p->left&&!p->right){ 93 if(p==t){ 94 free(p); 95 }else if(child==0){ 96 parent->left = NULL; 97 free(p); 98 }else{ 99 parent->right=NULL; 100 free(p); 101 } 102 }else if(!p->left){ 103 if(child==0){ 104 parent->left = p->right; 105 }else{ 106 // parent->left=p->left; 107 parent->right=p->right; 108 } 109 110 free(p); 111 112 }else if(!p->right){ 113 if(child==0){ 114 parent->left=p->left; 115 // parent->right=p->right; 116 }else{ 117 parent->right=p->left; 118 } 119 free(p); 120 }else{ 121 l1=p; 122 l=p->right; 123 while(l->left){ 124 l1=l; 125 l=l->left; 126 flag=true; 127 } 128 p->data=l->data; 129 if(flag){ 130 if(l->right) 131 l1->left=l->right; 132 else 133 l1->left=NULL; 134 }else{ 135 p->right=NULL; 136 } 137 break; 138 } 139 p=NULL; 140 }else if(key<p->data){ 141 child =0; 142 parent = p; 143 p=p->left; 144 }else{ 145 child = 1; 146 parent =p; 147 p=p->right; 148 } 149 } 150 } 151 152 int main(){ 153 int i,key; 154 ercha bst, *pos; 155 printf("data source:"); 156 for(i=0;i<ARRAYLEN;i++){ 157 printf("%d ",source[i]); 158 } 159 printf(" "); 160 Createer(&bst,source,ARRAYLEN); 161 printf("遍历二叉排序树"); 162 BST_LDR(&bst); 163 Deleteer(&bst,66); 164 printf(" 删除节点后的节点:"); 165 BST_LDR(&bst); 166 getch(); 167 return 0; 168 }

    二叉排序树python实现 

      1 class TreeNode(object):
      2     def __init__(self, data, left=None, right=None):
      3         self.data = data
      4         self.left = left
      5         self.right = right
      6         self.traversed_right = 0
      7         
      8 class BinaryTree(object):
      9     def __init__(self):
     10         self.root = None
     11         
     12     def searchNode(self, key):
     13         '''
     14         search node
     15         '''
     16         node = self.root
     17         while node:
     18             if key < node.data :
     19                 node = node.left
     20             elif key > node.data:
     21                 node = node.right
     22             else:
     23                 print("%d is found" % key)
     24                 return key
     25         print("
    %d is not found" % key)
     26     
     27     def insertNode(self, key):
     28         '''
     29         insert node
     30         '''
     31         if self.root is None:
     32             self.root = TreeNode(key)
     33             return 
     34         node = self.root
     35         while(node is not None):
     36             if key > node.data:
     37                 if node.right is None:
     38                     node.right = TreeNode(key)
     39                     return
     40                 else:
     41                     node = node.right
     42             elif key < node.data:
     43                 if node.left is None:
     44                     node.left = TreeNode(key)
     45                     return
     46                 else:
     47                     node=node.left
     48             else:
     49                 print("%d is in BinaryTree" % key)
     50                 return 
     51             
     52     def calculate_depth(self, node):
     53         '''
     54         计算节点的高度
     55         '''
     56         if (node.left is None) and (node.right is None):
     57             return 0
     58         elif node.left is None:
     59             height = self.calculate_depth(node.right) + 1
     60             print("height right is %d"%height)
     61         elif node.right is None:
     62             height = self.calculate_depth(node.left) + 1
     63             print("height left is %d"%height)
     64         else:
     65             height = max(self.calculate_depth(node.left) , self.calculate_depth(node.right)) + 1
     66             print("height is %d"%height)
     67         
     68         return height
     69         
     70     def deleteNode(self, key):
     71         ''' 删除分三种情况
     72         1)根节点是没有父节点的,故只要找到根节点的右子树的最左孩子的值作为根节点的值,然后将最左孩子置空,这里不能直接将temp置空,temp相当一个引用指向node
     73         2)要删除的节点只有左子树或者右子树
     74         3)要删除的节点有左右子树,找到删除节点的右子树的最左孩子的值作为删除节点的值
     75         '''
     76         parent = None
     77         node = self.root
     78         while node :
     79             if key < node.data:
     80                 parent = node
     81                 node = node.left
     82             elif key > node.data:
     83                 parent = node
     84                 node = node.right
     85             else:
     86                 if parent:
     87                     print("%d is found. Parent is %d" % (key, parent.data))
     88                 else:
     89                     print("root is found")
     90                 break
     91         if parent is None:
     92             temp = node.right
     93             temp_parent= node
     94             while(temp.left):
     95                 temp_parent = temp
     96                 temp = temp.left
     97             node.data = temp.data
     98             temp_parent.left = None
     99         # 判断删除节点是在parent的左边还是右边
    100         elif parent.data > key :
    101             if node.left is None :
    102                 parent.left = node.right
    103             elif node.right is None:
    104                 parent.left = node.left
    105             else:
    106                 temp = node.right
    107                 temp_parent= node
    108                 while(temp.left):
    109                     temp_parent = temp
    110                     temp = temp.left
    111                 node.data = temp.data
    112                 temp_parent.left = None
    113         elif parent.data < key:
    114             if node.left is None:
    115                 parent.right = node.right
    116             elif node.right is None:
    117                 parent.right = node.left
    118             else:
    119                 temp = node.right
    120                 temp_parent= node
    121                 while(temp.left):
    122                     temp_parent = temp
    123                     temp = temp.left
    124                 node.data = temp.data
    125                 temp_parent.left = None
    126             
    127     def beforeIterator(self):
    128         ''' before traversing
    129         '''
    130         node = self.root
    131         stack = []
    132         while(node or stack):
    133             while node:
    134                 yield node.data
    135                 stack.append(node)
    136                 node = node.left
    137             node = stack.pop()
    138             node = node.right
    139             
    140     def __iter__(self):
    141         ''' inorder traversing
    142         '''
    143         node = self.root
    144         stack = []
    145         while (node or stack):
    146             while node :
    147                 stack.append(node)
    148                 node = node.left
    149             node = stack.pop()
    150             yield node.data
    151             node = node.right
    152             
    153 
    154     
    155     def postIterator(self):
    156         ''' postorder traversing
    157         '''
    158         node = self.root
    159         stack = []
    160         while node or stack:
    161             while node and node.traversed_right == 0 :
    162                 node.traversed_right = 1 # 表示已经入list,list中的节点不能再向左访问
    163                 stack.append(node)
    164                 node = node.left
    165             
    166             node = stack.pop()
    167             if node.right and node.traversed_right != 2:
    168                 node.traversed_right = 2
    169                 stack.append(node)
    170                 node = node.right
    171             else:
    172                 yield node.data
    173                 if len(stack) == 0:
    174                     break
    175                 
    176             
    177 if __name__ == '__main__':
    178     lis = [62, 58, 88, 48, 73, 99, 35, 51, 93, 29, 37, 49, 56, 36, 50]
    179     bs_tree = BinaryTree()
    180     for i in range(len(lis)):
    181         bs_tree.insertNode(lis[i])
    182     # bs_tree.insert(100)
    183 #     bs_tree.delete(58)
    184     print("inorder traversing") 
    185     for i in bs_tree:
    186         print(i, end=" ")
    187        
    188     print("
    before traversing") 
    189     for i in bs_tree.beforeIterator():
    190         print(i, end=" ")
    191         
    192     print("
    poster traversing") 
    193     for i in bs_tree.postIterator():
    194         print(i, end=" ")
    195     bs_tree.searchNode(4)         
    196     bs_tree.searchNode(58)
    197 #     bs_tree.deleteNode(62)
    198     print("inorder traversing") 
    199     for i in bs_tree:
    200         print(i, end=" ")
    201     print("root data", bs_tree.root.data)     
    202     print("max depth is %d" % bs_tree.calculate_depth(bs_tree.root) )
  • 相关阅读:
    Beta阶段团队成员贡献分分配规则
    Alpha阶段事后分析
    Alpha阶段项目展示博客
    Alpha阶段测试报告
    Alpha阶段发布说明
    第十次ScrumMeeting博客
    【译】QSerialPort类
    Qt串口通讯
    QDialog设置为无边框
    QBackingStore::flush() called with non-exposed window, behavior is undefined
  • 原文地址:https://www.cnblogs.com/hoojjack/p/4753425.html
Copyright © 2020-2023  润新知