• 「BZOJ 1791」「IOI 2008」Island「基环树」


    题意

    求基环树森林所有基环树的直径之和

    题解

    考虑的一个基环树的直径,只会有两种情况,第一种是某个环上结点子树的直径,第二种是从两个环上结点子树内的最深路径,加上环上这两个结点之间的较长路径。

    那就找环,然后环上每个结点做树形(dp)。然后把环断成长度为(2n)的链,记录环上的前缀和(sum)。假设结点(u)子树内最深路径为(dep[u]),那么就是求(max(sum[i] - sum[j] + dep[i] + dep[j]),j < i)。这个就转换成(max(sum[i] + dep[i] + dep[j] - sum[j])),用单调队列维护最大的(dep[j] - sum[j])就行,类似滑动窗口。

    #include <algorithm>
    #include <cstring>
    #include <cstdio>
    #include <vector>
    #include <queue>
    using namespace std;
    
    typedef long long ll;
    
    const int N = 1e6 + 5;
    
    struct Edge {
    	int v, nxt, w;
    } e[N << 1];
    int hd[N], edge_num;
    
    void link(int u, int v, int w) {
    	e[edge_num] = (Edge) {v, hd[u], w};
    	hd[u] = edge_num ++;
    }
    
    int n, loop[N], cnt, idx, dfn[N];
    int fa[N], faw[N], loopw[N];
    ll dep1[N], dep2[N], tree_d;
    ll sum[N << 1], dep[N << 1];
    bool onloop[N];
    deque<int> q;
    
    void dfs(int u, int cur = -1) {
    	dfn[u] = ++ idx;
    	for(int i = hd[u]; ~ i; i = e[i].nxt) {
            if(cur == i) continue ;
    		int v = e[i].v;
    		if(dfn[v]) {
    			if(dfn[v] > dfn[u] || cnt) continue ;
                cnt ++;
                loop[cnt] = u;
                loopw[cnt] = e[i].w;
    			for(int j = u; j != v; j = fa[j]) {
                    cnt ++;
                    loop[cnt] = fa[j];
                    loopw[cnt] = faw[j];
                }
    		} else fa[v] = u, faw[v] = e[i].w, dfs(v, i ^ 1);
    	}
    }
    
    void dp(int u, int f = 0) {
    	dep1[u] = dep2[u] = 0;
    	for(int i = hd[u]; ~ i; i = e[i].nxt) {
    		int v = e[i].v;
    		if(v == f || onloop[v]) continue ;
    		dp(v, u);
    		ll dis = e[i].w + dep1[v];
    		if(dis > dep1[u]) {
                dep2[u] = dep1[u];
                dep1[u] = dis;
            } else if(dis > dep2[u]) {
                dep2[u] = dis;
            }
    	}
    	tree_d = max(tree_d, dep1[u] + dep2[u]);
    }
    
    int main() {
    	scanf("%d", &n);
        fill(hd + 1, hd + n + 1, -1);
    	for(int i = 1, v, w; i <= n; i ++) {
    		scanf("%d%d", &v, &w);
    		link(v, i, w);
    		link(i, v, w);
    	}
    	ll ans = 0, d;
    	for(int i = 1; i <= n; i ++)
    		if(!dfn[i]) {
                cnt = 0; dfs(i);
    			for(int j = 1; j <= cnt; j ++)
    				onloop[loop[j]] = 1;
    			d = 0;
    			for(int j = 1; j <= cnt; j ++) {
    				tree_d = 0;
    				dp(loop[j]);
    				dep[j] = dep[j + cnt] = dep1[loop[j]];
    				d = max(d, tree_d);
    			}
    			for(int j = 1; j <= cnt << 1; j ++)
    				sum[j] = sum[j - 1] + loopw[j <= cnt ? j : j - cnt];
    			q.clear();
    			for(int j = 1; j <= cnt << 1; j ++) {
    				//sum_j + dep_j + dep_i - sum_i
    				for(; !q.empty() && q.front() + cnt - 1 < j; q.pop_front()) ;
    				ll c = dep[j] - sum[j];
    				if(!q.empty()) d = max(d, sum[j] + dep[j] + dep[q.front()] - sum[q.front()]);
    				for(; !q.empty() && dep[q.back()] - sum[q.back()] <= c; q.pop_back()) ;
    				q.push_back(j);
    			}
    			ans += d;
    		}
    	printf("%lld
    ", ans);
    	return 0;
    }
    
    

    什么,( ext{BZOJ})(10^6)会爆栈?那只能手工栈了。。

    什么,手工栈会( ext{MLE})?卡卡卡

    然后代码就十分难看了(

    (block)函数是把(dfs)到的结点的(head)复制一遍。

    #include <algorithm>
    #include <bitset>
    #include <cstdio>
    using namespace std;
    
    typedef long long ll;
    
    const int N = 1e6 + 5;
    
    struct Edge {
    	int v, nxt, w;
    } e[N << 1];
    int hd[N], h[N], edge_num;
    
    void link(int u, int v, int w) {
    	e[edge_num] = (Edge) {v, hd[u], w};
    	hd[u] = edge_num ++;
    }
    
    int n, loop[N], loopw[N], cnt, idx, dfn[N];
    int fa[N], faw[N], q[N << 1], node[N], qn, ql, qr;
    ll tree_d, sum[N << 1], dep[N];
    bitset<N> onloop, vis;
    
    void block(int s) {
        ql = qr = qn = 0;
        vis[s] = 1; q[qr ++] = s; node[qn ++] = s;
        int u, i;
        while(ql < qr) {
            u = q[ql ++];
            for(i = hd[u]; ~ i; i = e[i].nxt)
                if(!vis[e[i].v]) {
                    vis[e[i].v] = 1;
                    q[qr ++] = e[i].v;
                    node[qn ++] = e[i].v;
                }
        }
        for(i = 0; i < qn; i ++) vis[node[i]] = 0;
    }
    
    int st[N][2], top;
    void dfs(int s) {
        block(s);
        int i, j, u, v, cur;
        for(i = 0; i < qn; i ++) h[node[i]] = hd[node[i]];
        top = 0; st[top][0] = s; st[top][1] = -1; top ++;
        while(top >= 1) {
            u = st[top - 1][0]; cur = st[top - 1][1];
            if(!dfn[u]) dfn[u] = ++ idx;
            if(h[u] == -1) { top --; continue ; }
            for(int &i = h[u]; ~ i; i = e[i].nxt) {
                if(i == cur) continue ;
                v = e[i].v;
                if(!dfn[v]) {
                    fa[v] = u; faw[v] = e[i].w;
                    st[top][0] = v; st[top][1] = i ^ 1; top ++;
                    i = e[i].nxt;
                    break ;
                } else if(dfn[v] < dfn[u]) {
                    cnt ++;
                    loop[cnt] = u;
                    loopw[cnt] = e[i].w;
                    onloop[u] = 1;
                    for(j = u; j != v; j = fa[j]) {
                        cnt ++;
                        loop[cnt] = fa[j];
                        loopw[cnt] = faw[j];
                        onloop[fa[j]] = 1;
                    }
                }
            }
        }
    }
    
    void block2(int s) {
        ql = qr = qn = 0;
        vis[s] = 1; q[qr ++] = s; node[qn ++] = s;
        int u, i;
        while(ql < qr) {
            u = q[ql ++];
            for(i = hd[u]; ~ i; i = e[i].nxt)
                if(!vis[e[i].v] && !onloop[e[i].v]) {
                    vis[e[i].v] = 1;
                    q[qr ++] = e[i].v;
                    node[qn ++] = e[i].v;
                }
        }
        for(i = 0; i < qn; i ++) vis[node[i]] = 0;
    }
    
    ll dep1[N], dep2[N];
    ll dp(int s) {
        block2(s);
        int i, j, u, v, cur; ll dis, dep2;
        for(i = 0; i < qn; i ++) h[node[i]] = hd[node[i]];
        top = 0; st[top][0] = s; st[top][1] = -1; top ++;
        while(top >= 1) {
            u = st[top - 1][0]; cur = st[top - 1][1];
            if(h[u] == -1) {
                dep2 = dep1[u] = 0;
                for(int i = hd[u]; ~ i; i = e[i].nxt) {
                    if((v = e[i].v) == cur || onloop[v]) continue ;
                    dis = e[i].w + dep1[v];
                    if(dis > dep1[u]) {
                        dep2 = dep1[u];
                        dep1[u] = dis;
                    } else if(dis > dep2) {
                        dep2 = dis;
                    }
                    tree_d = max(tree_d, dep1[u] + dep2);
                }
                top --;
                continue ;
            }
            for(int &i = h[u]; ~ i; i = e[i].nxt) {
                if((v = e[i].v) == cur || onloop[v]) continue ;
                st[top][0] = v; st[top][1] = u; top ++;
            }
        }
        return dep1[s];
    }
    
    int main() {
    	scanf("%d", &n);
        fill(hd + 1, hd + n + 1, -1);
        int i, j, v, w;
    	for(i = 1; i <= n; i ++) {
    		scanf("%d%d", &v, &w);
    		link(v, i, w); link(i, v, w);
    	}
    	ll ans = 0, d, c;
    	for(i = 1; i <= n; i ++)
    		if(!dfn[i]) {
                cnt = d = 0; dfs(i);
    			for(j = 1; j <= cnt; j ++) {
    				tree_d = 0;
    				dep[j] = dp(loop[j]);
    				d = max(d, tree_d);
    			}
    			for(j = 1; j <= cnt << 1; j ++)
    				sum[j] = sum[j - 1] + loopw[j <= cnt ? j : j - cnt];
    			ql = qr = 0;
                #define _dep(u) (u <= cnt ? dep[u] : dep[u - cnt])
    			for(j = 1; j <= cnt << 1; j ++) {
    				//sum_j + dep_j + dep_i - sum_i
    				for(; ql < qr && q[ql] + cnt - 1 < j; ql ++) ;
    				c = _dep(j) - sum[j];
    				if(ql < qr) d = max(d, sum[j] + _dep(j) + _dep(q[ql]) - sum[q[ql]]);
    				for(; ql < qr && _dep(q[qr - 1]) - sum[q[qr - 1]] <= c; qr --) ;
    				q[qr ++] = j;
    			}
                #undef _dep
    			ans += d;
    		}
    	printf("%lld
    ", ans);
    	return 0;
    }
    
    
  • 相关阅读:
    前端--页面提交重置功能
    ztree获取当前选中节点子节点id集合的方法(转载)
    sqlserver锁表、解锁、查看销表 (转载)
    解决前端文件修改后浏览器页面未更新的问题
    简单的上传文件
    如何在Eclipse中查看JDK以及JAVA框架的源码(转载)
    设计模式--观察者模式
    WebService 学习
    学习quartz定时
    JS 中AJAX,Fetch,Axios关系
  • 原文地址:https://www.cnblogs.com/hongzy/p/10357432.html
Copyright © 2020-2023  润新知