期望dp
数学期望: (E(X) = sum {p_ix_i})
数学期望是线性函数,满足(E(aX + By) = a * E(X) + b * E(Y))
接下来看两道毒瘤题
绿豆蛙的归宿
对于每个点,它的期望值 = 当前路径长度 / 起点的出度
所以我们先求出每个点的出度——无非就是在加入每条边的时候统计一下
根据数学期望的定义和性质,
[F[x]=frac{1}{k} sum_{i = 1}^{k} (F[y_i ]+ z_i)
]
显然我们需要用逆推法,也就需要建反图,从(F[N] = 0)开始,求F[1]
#include<iostream>
#include<cstdio>
#include<queue>
using namespace std;
const int N = 200005;
int ver[N], edge[N], head[N], Next[N], tot;
int n, m, out[N], deg[N];
double f[N];
void add(int x, int y, int z){
ver[++tot] = y, edge[tot] = z;
Next[tot] = head[x], head[x] = tot;
}
int read(){
int x = 0, ch = getchar();
while(ch < '0' || ch > '9') ch = getchar();
while(ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar();
return x;
}
queue<int> q;
void bfs(){
q.push(n);
while(q.size()){
int x = q.front(); q.pop();
for(int i = head[x]; i; i = Next[i]){
int y = ver[i], z = edge[i];
f[y] += (f[x] + z) / deg[y];
out[y]--;
if(out[y] == 0) q.push(y);
}
}
}
int main(){
cin >> n >> m;
for(int i = 1; i <= m; i++){
int x = read(), y = read(), z = read();
add(y, x, z);
deg[x]++, out[x]++;
}
bfs();
printf("%.2f", f[1]);
return 0;
}