这段时间学习了一下数学上的导数和导函数,决定写一篇从零开始的学习笔记,保证一个没有学过任何导数知识的初中生只要愿意看都能看懂。
本文主要为了使读者更好地理解,对于概念性的东西可能不甚严谨,抱歉!
如果有关于概念的建议,也欢迎留言建议。
1. 平均变化率
1.1 定义
定义 : 对于一个函数 (f(x)), 其在 ([x_1, x_2]) 的区间内的平均变化值定义为 过 ((x_1, f(x_1)), (x_2, f(x_2))) 的直线的斜率。((x_1≠x_2))
所以易得到 :(设平均变化率为 (k)) (k = frac{f(x_1)-f(x_2)}{x_1-x_2})
也可以写成 : (k = frac{Delta y}{Delta x}) ( (Delta y = y_1-y_2=f(x_1)-f(x_2) ; Delta x= x_1-x_2))
1.2 图像 & 性质
对于过 ((x_1, f(x_1)), (x_2, f(x_2))) 的直线,易理解这是函数的一条割线。
上图 : 对于函数 (f(x)=frac{1}{2}x^2), 对于这个函数在 ([1, 2]) 的区间内的平均变化值(过 ((1, frac{1}{2}), (2, 2))) 对应的直线
这个性质看上去没什么用,不过下面的小节我们会了解到这条性质特殊化后的意义(剧透:函数的割线 ( ightarrow) 函数的切线)
1.3 应用
除了出题,貌似没有任何应用。
For OIers & ACMers: 洛谷习题 【数学 1.1.1】平均变化率
2. 切线 & 导数
2.1 定义
切线定义 : 对于一个函数 (f(x)), 过 ((x_1, f(x_1))) 且仅过该点的一条直线称为过该点的切线。
导数定义 : 对于一个函数 (f(x)), 过 ((x_1, f(x_1))) 且仅过该点的一条直线的斜率称为过该点的导数。(这跟后面要说的导数有很大不同。事实上,我们一般说的导数(也就是后面要说的)是导函数的简称)
如图,为 (f(x)=x^2) 于 ((1, 1)) 处的切线 (y=2x-1) (导数为 (2))。
但要注意,上述的定义是不严谨的!
如图,为 (f(x)=x^3+2x^2) 于 ((-1, 1)) 处的切线 (y=-x) (导数为 (-1))。可见,该点的切线还过函数另一点 ((0, 0))。
我不知道如何给出一个规范的定义,暂时也没有查到,查到再补定义的坑吧。(如果有人有好的定义,麻烦评论)
2.3 求法
有了前面“平均变化率”的铺垫,我们可以想到,(f(x)) 在 ((x_1, f(x_1))) 的导数其实可以看成 (f(x)) 在 ([x_1, x_1]) 区间内的平均变化率。
于是尝试计算:(k = frac{Delta y}{Delta x} = frac{f(x_1) - f(x_1)}{x - x} = frac{0}{0} =) 无意义
经过思考也可以明白,仅知道一条直线(我们要求的切线)所过的一个点的坐标,是不足以算出其斜率或表达式的。
但是,我们不仅知道 ((x_1, f(x_1))),还知道 (f(x)) 的表达式!
于是历史上一位大牛横空出世,创造了 (lim) 符号。
2.3.1 什么是 lim 符号
对于 $$lim_{a ightarrow b}f(a)$$ 来说,其表示的是 (a) 在极限接近于 (b) 时的值。一般的,这里的 (a) 若取了 (b),则 (f(a)) 大概率是无意义的。
2.3.2 用 lim 解决我们的问题
(接下来都以 (f(x)=x^3+2x^2) 于 ((-1, 1)) 的切线为例)
我们假设有一条线经过了两个函数上的点 ((x_1, f(x_1))) 和 ((x_1 + Delta x, f(x_1 + Delta x)))。理想情况是,当 (Delta x = 0) 时,这条线就是过 ((x_1, f(x_1))) 的函数切线。
[这句话应该用于导函数处,此处应该经过修改]$$lim_{Delta x ightarrow 0} frac{f(x) - f(x + Delta x)}{x - (x + Delta x)} = lim_{Delta x ightarrow 0} {Delta x ightarrow 0} frac{x^3+2x^2 - ((x + Delta x)^3+2(x + Delta x)^2)}{-Delta x} = lim_{Delta x ightarrow 0} frac{x^3+2x^2 - (x^3+2x^2+3x^2Delta x+3xDelta x^2+Delta x^3+4xDelta x+Delta x^2)}{-Delta x} = lim_{Delta x ightarrow 0} frac{3x^2Delta x+3xDelta x^2+Delta x^3+4xDelta +Delta x^2)}{Delta x}=lim_{Delta x ightarrow 0} 3x^2+3xDelta x+Delta x^2+4x+Delta x=3x^2+4x$$
要理解上面这个式子,【to be continued】
2.4 应用
For OIers & ACMers: 洛谷习题 数学 1.2.1】导数(非导函数) 【数学 1.2.2】函数的切线
// 未完待续
docu
[这句话应该用于导函数处,此处应该经过修改]$$lim_{Delta x ightarrow 0} frac{f(x) - f(x + Delta x)}{x - (x + Delta x)} = lim_{Delta x ightarrow 0} {Delta x ightarrow 0} frac{x^3+2x^2 - ((x + Delta x)^3+2(x + Delta x)^2)}{-Delta x} = lim_{Delta x ightarrow 0} frac{x^3+2x^2 - (x^3+2x^2+3x^2Delta x+3xDelta x^2+Delta x^3+4xDelta x+Delta x^2)}{-Delta x} = lim_{Delta x ightarrow 0} frac{3x^2Delta x+3xDelta x^2+Delta x^3+4xDelta +Delta x^2)}{Delta x}=lim_{Delta x ightarrow 0} 3x^2+3xDelta x+Delta x^2+4x+Delta x=3x^2+4x$$