• maya中的顶点平滑算法(vertex smooth algorithm)


          继上文继续写。有了顶点迭代器之后就可以利用MItMeshVertex类的getConnectedVertices方法来获取相连点并代入平滑算法。

          选择什么样的平滑算法呢?本人比较懒,直接打开了计算机图形学(第四版)322页直接用bezier样条曲线的方法来做平滑。该算法的公式比较复杂,有大量阶乘计算,考虑到执行效率的问题,我决定简化这个式子,即在三点相连形成一条线的情况下,中间点的位置式子如下:

          x(u) = x0 *(2!/(0!*2!) )*(u^0)*((1-u)^2)

                    + x1 *(2!/(1!*1!) )*(u^1)*((1-u)^1)

                    + x2 *(2!/(2!*0!) )*(u^2)*((1-u)^0)

          y(u) = y0 *(2!/(0!*2!) )*(u^0)*((1-u)^2)

                    + y1 *(2!/(1!*1!) )*(u^1)*((1-u)^1)

                    + y2 *(2!/(2!*0!) )*(u^2)*((1-u)^0)

          z(u) = z0 *(2!/(0!*2!) )*(u^0)*((1-u)^2)

                    + z1 *(2!/(1!*1!) )*(u^1)*((1-u)^1)

                    + z2 *(2!/(2!*0!) )*(u^2)*((1-u)^0)

          考虑到当前只需要调整中间点的位置,该式子的线性关系可以忽略,于是直接设u = 0.5,中间点的位置式子即可简化为:

          x = x0  * 0.25 + x1 * 0.5 + x2 * 0.25

          y = y0  * 0.25 + y1 * 0.5 + y2 * 0.25

          z = z0  * 0.25 + z1 * 0.5 + z2 * 0.25

          该式子只是针对曲线上两点相邻的情况得。

          考虑到利用顶点迭代器MItMeshVertex的getConnectedVertices方法得到的相连点一般都是四个(生产中大量使用四角面),所以需要对该式子拓展一下。又由于相连点数量不确定,因为会有三角面,也可能当前中间点在模型边缘上,导致相连点不会一直是四个。所以本人干脆删繁就简以性能为先,将式子转为求中值的形式:

          x = (x0 + x1 + ... + xn) / connectedlist.length()

          y = (y0 + y1 + ... + yn) / connectedlist.length()

          z = (z0 + z1 + ... + zn) / connectedlist.length()

    这样就省事了,当然这样的结果就是顶点特征不会明显,模型彻底平滑了。但考虑性能至上,就不纠结了。收工了~

       

         

          

  • 相关阅读:
    C#模拟POST表单提交 WebClient
    视频广告屏蔽器(附下载地址)
    SQL Server 不同数据库导入指定数据解决方案
    WinRAR(WinZip)压缩与解压实现(C#版Window平台)
    Visual Studio 扩展包(.vsix)制作
    ORM for Net主流框架汇总与效率测试
    文件删除小助手
    C# 控制台应用程序输出颜色字体[更正版]
    IE与IE内核浏览器的那点事
    where in的sql语句按照指定ID进行排序的解决方法
  • 原文地址:https://www.cnblogs.com/hksac/p/5139638.html
Copyright © 2020-2023  润新知