题目描述
麦克雷有一个1~n的排列,他想知道对于一些区间,有多少对区间内的数(x,y),满足x能被y整除。
输入
第一行包含2个正整数n,m。表示有n个数,m个询问。
接下来一行包含n个正整数,表示麦克雷有的数列。
接下来m行每行包含2个正整数l,r。表示询问区间[l,r]。
输出
共 m 行,每行一个整数,表示满足条件的对数。
样例输入
10 9
1 2 3 4 5 6 7 8 9 10
1 10
2 9
3 8
4 7
5 6
2 2
9 10
5 10
4 10
样例输出
27
14
8
4
2
1
2
7
9
数据范围
30%:1<=n,m<=100
100%:1<=n,m<=2*10^5,1<=pi<=n
解法
对于一个区间[l,r],它的答案=区间[1,r]中的总贡献-区间[1,r]中[1,l-1]的贡献。
证明:
显然,区间[l,r]的答案=区间[1,r]的答案-区间[1,l]的答案-所有(a[i],a[j])的贡献。(其中i∈[1,l],j∈[1,r])
而又,区间[1,l]的答案+所有(a[i],a[j])的贡献=区间[1,r]中[1,l-1]的贡献;
所以区间[l,r]的答案=区间[1,r]中的总贡献-区间[1,r]中[1,l-1]的贡献。
如果把区间按右端点升序排序,那么使用扫描线即可将问题转化为:
区间[1,r]中,任意区间贡献和。
用树状数组维护即可。
代码
#include<iostream>
#include<stdio.h>
#include<math.h>
#include<string.h>
#include<algorithm>
#define ll long long
#define ln(x,y) ll(log(x)/log(y))
#define sqr(x) ((x)*(x))
using namespace std;
const char* fin="aP3.in";
const char* fout="aP3.out";
const ll inf=0x7fffffff;
const ll maxn=200007,maxt=maxn*5;
ll n,m,i,j,k,l,r,ks,cnt;
ll tmp=0;
ll a[maxn],b[maxn],c[maxn];
ll ans[maxn];
ll hh[maxn];
bool bz[maxn];
struct q{
ll l,r,id;
}qu[maxn];
bool cmp(q a,q b){
return a.r<b.r;
}
void change(ll v,ll v1){
if (!bz[v]) return;
v=b[v];
cnt+=v1;
for (;v<=n;v+=v&-v) c[v]+=v1;
}
ll getsum(ll v){
ll x=0;
for (;v;v-=v&-v) x+=c[v];
return x;
}
ll getsum(ll l,ll r){
return getsum(r)-getsum(l-1);
}
void join(ll v){
ll i,j,k;
bz[a[v]]=true;
for (i=1;i<=(ll)(sqrt(a[v]));i++){
if (a[v]%i==0){
change(a[v]/i,1);
if (i*i!=a[v]) change(i,1);
}
}
for (i=a[v]*2;i<=n;i+=a[v]) change(i,1);
}
int main(){
scanf("%d%d",&n,&m);
ks=sqrt(n);
for (i=1;i<=n;i++){
scanf("%d",&a[i]);
b[a[i]]=i;
}
for (i=1;i<=m;i++){
scanf("%d%d",&qu[i].l,&qu[i].r);
qu[i].id=i;
}
sort(qu+1,qu+m+1,cmp);
r=0;
for (i=1;i<=m;i++){
while (r<qu[i].r) {
join(++r);
}
ans[qu[i].id]=cnt-getsum(qu[i].l-1);
}
for (i=1;i<=m;i++) printf("%lld
",ans[i]);
return 0;
}
启发
离线的区间问题归结为:
莫队算法
范围
对于已知区间,给其加入元素或删除元素以较低复杂度完成。
则适用莫队算法。
扩展
如果加入元素简单,删除元素难,那么就可以使用只增莫队算法。
参考这一题。
分块
坑待填
区间拆分扫描线
范围
当[1,i]容易计算时,且区间[l,r]可拆分成[1,r]和[1,l-1];
则适用区间拆分扫描线。
参考这一题。
扩展
如果[l,r]拆分后满足ans([l,r])=ans([1,r])-ans([1,l-1])-ans(分属于[1,l-1],[l,r]);
那么是可以将ans([l,r])=ans([1,r])-[1,r]下[1,l-1]的贡献。
参考本题。