• SPOJ GSS5


    GSS5 - Can you answer these queries V

    You are given a sequence A[1], A[2], ..., A[N] . ( |A[i]| <= 10000 , 1 <= N <= 10000 ). A query is defined as follows: Query(x1,y1,x2,y2) = Max { A[i]+A[i+1]+...+A[j] ; x1 <= i <= y1 , x2 <= j <= y2 and x1 <= x2 , y1 <= y2 }. Given M queries (1 <= M <= 10000), your program must output the results of these queries.

    Input

    The first line of the input consist of the number of tests cases <= 5. Each case consist of the integer N and the sequence A. Then the integer M. M lines follow, contains 4 numbers x1, y1, x2 y2.

    Output

    Your program should output the results of the M queries for each test case, one query per line.

    Example

    Input:
    2
    6 3 -2 1 -4 5 2
    2
    1 1 2 3
    1 3 2 5
    1 1
    1
    1 1 1 1
    
    Output:
    2
    3
    1
    
    
    
    【题解】
    维护前缀/后缀最大,区间最大,区间总和

    区间[x1, y1] [x2, y2]分情况查询
    两个区间没有交(y1 < x2), 则答案为[x1, y1].right + [x2, y2].left + (y1 +1 <= x2 - 1 ? [y1 + 1, x2 - 1].sum : 0)

    两个区间有交(y1 >= x2), 则分种情况讨论:
    左端点 右端点
    1、左区间非公共部分 公共部分
    2、 公共部分       公共部分
    3、左区间非公共部分 右区间非公共部分

    4、  公共部分 右区间非公共部分
    其实这四种情况可以并为三种:
    公共部分最大连续区间
    左区间右边最大连续后缀, 右区间非公共部分最大连续前缀
    左区间非公共部分最大连续后缀, 右区间最大连续前缀
    考虑一下边界,看好怎么+1 -1 合适即可
      1 #include <iostream>
      2 #include <cstdio>
      3 #include <cstdlib>
      4 #include <cstring>
      5 #define max(a, b) ((a) > (b) ? (a) : (b))
      6 #define min(a, b) ((a) < (b) ? (a) : (b)) 
      7 //改longlong 
      8 inline void read(long long &x)
      9 {
     10     x = 0;char ch = getchar(), c = ch;
     11     while(ch < '0' || ch > '9')c = ch, ch = getchar();
     12     while(ch <= '9' && ch >= '0')x = x * 10 + ch - '0', ch = getchar();
     13     if(c == '-')x = -x;
     14 }
     15 
     16 inline void swap(long long &a, long long &b)
     17 {
     18     long long tmp = a;a = b;b = tmp;
     19 }
     20 
     21 const long long MAXN = 100000 + 10;
     22 const long long INF = 0x3f3f3f3f3f3f3f3f;
     23 
     24 long long n,m,num[MAXN],left[MAXN],right[MAXN],ma[MAXN],sum[MAXN];
     25 
     26 void build(long long o = 1, long long l = 1, long long r = n)
     27 {
     28     if(l == r)
     29     {
     30         left[o] = right[o] = ma[o] = sum[o] = num[l];
     31         return;
     32     }
     33     long long mid = (l + r) >> 1;
     34     build(o << 1, l, mid);
     35     build(o << 1 | 1, mid + 1, r);
     36     
     37     left[o] = max(left[o << 1], sum[o << 1] + left[o << 1 | 1]);
     38     right[o] = max(right[o << 1 | 1], sum[o << 1 | 1] + right[o <<1]);
     39     ma[o] = max(left[o], max(right[o], left[o << 1 | 1] + right[o << 1]));
     40     ma[o] = max(ma[o], max(ma[o << 1], ma[o << 1 | 1]));
     41     sum[o] = sum[o << 1] + sum[o << 1 | 1];
     42 }
     43 
     44 struct Node
     45 {
     46     long long left, right, ma, sum;
     47     Node(){left = right = ma = -INF;sum = 0;}
     48     Node(long long _left, long long _right, long long _ma, long long _sum){left = _left, right = _right, ma = _ma, sum = _sum;}
     49 };
     50 
     51 Node ask(long long ll, long long rr, long long o = 1, long long l = 1, long long r = n)
     52 {
     53     if(ll <= l && rr >= r)return Node(left[o], right[o], ma[o], sum[o]);
     54     int mid = (l + r) >> 1;
     55     int flag1 = 0, flag2 = 0;
     56     Node re, ans1, ans2;
     57     if(mid >= ll) ans1 = ask(ll, rr, o << 1, l, mid), flag1 = 1;
     58     if(mid < rr)  ans2 = ask(ll, rr, o <<1 | 1, mid + 1, r), flag2 = 1;
     59     
     60     re.sum = ans1.sum + ans2.sum;
     61     if(flag1)re.left = max(ans1.left, ans1.sum + ans2.left);
     62     else re.left = ans2.left;
     63     if(flag2)re.right = max(ans2.right, ans2.sum + ans1.right);
     64     else re.right = ans1.right;
     65     re.ma = max(re.left, max(re.right, max(ans1.right + ans2.left, max(ans1.ma, ans2.ma))));
     66     
     67     return re;
     68 }
     69 
     70 long long solution(long long x1, long long y1, long long x2, long long y2)
     71 {
     72     register Node tmp1, tmp2, tmp3;
     73     long long ans = -INF;
     74     if(y1 < x2)
     75     {
     76         tmp1 = ask(x1, y1);
     77         tmp2 = ask(x2, y2);
     78         if(y1 + 1 <= x2 - 1)tmp3 = ask(y1 + 1, x2 - 1);
     79         return tmp1.right + tmp2.left + tmp3.sum;
     80     }
     81     else
     82     {
     83         tmp1 = ask(x2, y1);
     84         ans = tmp1.ma;
     85 
     86         tmp2 = ask(x2, y2); 
     87         if(x1 <= x2 - 1)tmp3 = ask(x1, x2 - 1);
     88         else tmp3.right = 0;
     89         ans = max(ans, tmp2.left + tmp3.right);
     90         
     91         tmp2 = ask(x1, y1);
     92         if(y1 + 1 <= y2)tmp3 = ask(y1 + 1, y2);
     93         else tmp3.left = 0;
     94         ans = max(ans, tmp2.right +  tmp3.left);
     95         
     96         return ans;
     97     }
     98 }
     99 
    100 int main()
    101 {
    102     long long t;read(t);
    103     for(;t;--t)
    104     {
    105         read(n);
    106         for(register long long i = 1;i <= n;++ i)read(num[i]);
    107         memset(ma, -0x3f, sizeof(ma));
    108         memset(left, -0x3f, sizeof(left));
    109         memset(right, -0x3f, sizeof(right));
    110         memset(sum, 0, sizeof(sum));
    111         build();
    112         read(m);
    113         for(register long long i = 1;i <= m;++ i)
    114         {
    115             long long x1, x2, y1, y2;
    116             read(x1), read(y1), read(x2), read(y2);
    117             printf("%lld
    ", solution(x1, y1, x2, y2));
    118         } 
    119     }
    120     return 0;
    121 } 
    SPOJ GSS5

    注册不了SPJ, 跟标称大数据/小数据(测边界情况)对拍,拍了近半个小时,无错

    
    
  • 相关阅读:
    Oracle体系结构详细图解
    了解Oracle体系结构(超详细)
    Oracle 12C DataGuard部署以及维护
    RAC上,对于buffer cache的全局锁,称为PCM锁,当然,对于enq,lc的锁,称为non-PCM锁
    oracle锁与死锁概念,阻塞产生的原因以及解决方案
    Oracle 多粒度锁机制介绍
    Master Note For Oracle Database Upgrades and Migrations (Doc ID 1152016.1)
    Oracle 12c和18c中的MGMTDB(下)
    AIX系统性能管理之Oracle案例分析
    Web安全从入门到“放弃”之暴力破解
  • 原文地址:https://www.cnblogs.com/huibixiaoxing/p/7487975.html
Copyright © 2020-2023  润新知