• leetcode Convert Sorted List to Binary Search Tree


    把一个有序链表构成成平衡二叉树。和上一题有一点像。

    思路一:将有序链表存在一个数组里。然后根据每次访问中间节点当做根节点递归左右子树节点即可。时间O(n)空间O(n)代码如下:

    /**
     * Definition for singly-linked list.
     * struct ListNode {
     *     int val;
     *     ListNode *next;
     *     ListNode(int x) : val(x), next(NULL) {}
     * };
     */
    /**
     * Definition for binary tree
     * struct TreeNode {
     *     int val;
     *     TreeNode *left;
     *     TreeNode *right;
     *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
     * };
     */
    class Solution {
    public:
        TreeNode *sortedArrayTree(vector<int> arr, int start, int end)
        {
            if (start > end) return NULL;
        
            TreeNode *root = new TreeNode(arr[(start + end)/2]);
        
            root -> left = sortedArrayTree(arr, start, (start + end)/2 - 1);
            root -> right = sortedArrayTree(arr, (start + end)/2 + 1, end);
            return root;
        }
        
        // 给定有序链表,构造高度平衡二叉树
        TreeNode *sortedListToBST(ListNode *head)
        {
            if (!head) return NULL;
        
            vector<int> tmp;
            while(head)
            {
                tmp.push_back(head -> val);
                head = head -> next;
            }
            return sortedArrayTree(tmp, 0, tmp.size() - 1);
        }
    
    };

    思路和做法应该是对的,但是Memory Limit Exceeded了,说明不能用数组存,没有那么大的空间,那就之间在链表上操作。是否记得我们在Construct Binary Tree from Inorder and Postorder Traversal中也遇到过Memory Limit的问题。那里也是应为开辟的空间有点大了。

    其实巧妙的是,我发现如果我们这里把传入的arr当做应用传入,也就是vector<int> &arr的话,就可以Accept。不信你改改试试。不过我们还是再想想,直接链表上怎么操作吧。

    这个是用两个链表节点递归的,节点相同就返回null,找中间节点用代码中的while操作,时间O(n logn),java代码如下:

    /**
     * Definition for singly-linked list.
     * public class ListNode {
     *     int val;
     *     ListNode next;
     *     ListNode(int x) { val = x; next = null; }
     * }
     */
    /**
     * Definition for binary tree
     * public class TreeNode {
     *     int val;
     *     TreeNode left;
     *     TreeNode right;
     *     TreeNode(int x) { val = x; }
     * }
     */
    public class Solution {
        public TreeNode sortedListToBST(ListNode head) {
            return rec(head, null);
        }
        
        public TreeNode rec(ListNode start, ListNode end) {
            if(start == end) {
                return null;
            }
            ListNode p = start, q = start;
            while(q != end && q.next != end) {
                p = p.next;
                q = q.next.next;
            }
            
            TreeNode root = new TreeNode(p.val);
            root.left = rec(start, p);
            root.right = rec(p.next, end);
            
            return root;
        }
        
    }

    这个是用传入长度,然后找到中间节点:

    /**
     * Definition for singly-linked list.
     * struct ListNode {
     *     int val;
     *     ListNode *next;
     *     ListNode(int x) : val(x), next(NULL) {}
     * };
     */
    /**
     * Definition for binary tree
     * struct TreeNode {
     *     int val;
     *     TreeNode *left;
     *     TreeNode *right;
     *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
     * };
     */
    class Solution {
    public:
        TreeNode *sortedListToBST(ListNode *head) {
            int n=0;
            ListNode *p=head;
            while(p!=NULL)n++,p=p->next;
            return build(head,n);        
        }
        TreeNode *build(ListNode *head,int n)
        {
            if(head==NULL||n==0)return NULL;
            ListNode *p=head;
            for(int i=1;i<(n+1)/2;++i)p=p->next;
            TreeNode *root=new TreeNode(p->val);
            root->left=build(head,(n+1)/2-1);
            root->right=build(p->next,n-(n+1)/2);
        }
    };

    leetcode上讨论组的最佳解法是自底向上的:时间O(n),常数额外空间:

    BinaryTree* sortedListToBST(ListNode *& list, int start, int end) {
      if (start > end) return NULL;
      // same as (start+end)/2, avoids overflow
      int mid = start + (end - start) / 2;
      BinaryTree *leftChild = sortedListToBST(list, start, mid-1);
      BinaryTree *parent = new BinaryTree(list->data);
      parent->left = leftChild;
      list = list->next;
      parent->right = sortedListToBST(list, mid+1, end);
      return parent;
    }
     
    BinaryTree* sortedListToBST(ListNode *head, int n) {
      return sortedListToBST(head, 0, n-1);
    }
  • 相关阅读:
    09-JS的事件流的概念(重点)
    08-jQuery的位置信息
    07-小米导航案例
    python-selector模块
    python--day9--异步IO、数据库、队列、缓存
    python--select多路复用socket
    python--gevent高并发socket
    python--协程
    python--进程锁、进程池
    python--多进程
  • 原文地址:https://www.cnblogs.com/higerzhang/p/4132072.html
Copyright © 2020-2023  润新知