• 图像分类案例1


    Kaggle上的图像分类(CIFAR-10)

    现在,我们将运用在前面几节中学到的知识来参加Kaggle竞赛,该竞赛解决了CIFAR-10图像分类问题。比赛网址是https://www.kaggle.com/c/cifar-10

    # 本节的网络需要较长的训练时间
    # 可以在Kaggle访问:
    # https://www.kaggle.com/boyuai/boyu-d2l-image-classification-cifar-10
    import numpy as np
    import torch
    import torch.nn as nn
    import torch.optim as optim
    import torchvision
    import torchvision.transforms as transforms
    import torch.nn.functional as F
    import torch.optim as optim
    from torchvision import datasets, transforms
    import os
    import time
    
    print("PyTorch Version: ",torch.__version__)
    
    PyTorch Version:  1.3.0
    

    获取和组织数据集

    比赛数据分为训练集和测试集。训练集包含 50,000 图片。测试集包含 300,000 图片。两个数据集中的图像格式均为PNG,高度和宽度均为32像素,并具有三个颜色通道(RGB)。图像涵盖10个类别:飞机,汽车,鸟类,猫,鹿,狗,青蛙,马,船和卡车。 为了更容易上手,我们提供了上述数据集的小样本。“ train_tiny.zip”包含 80 训练样本,而“ test_tiny.zip”包含100个测试样本。它们的未压缩文件夹名称分别是“ train_tiny”和“ test_tiny”。

    图像增强

    data_transform = transforms.Compose([
        transforms.Resize(40),
        transforms.RandomHorizontalFlip(),
        transforms.RandomCrop(32),
        transforms.ToTensor()
    ])
    trainset = torchvision.datasets.ImageFolder(root='/home/kesci/input/CIFAR102891/cifar-10/train'
                                                , transform=data_transform)
    
    trainset[0][0].shape
    
    torch.Size([3, 32, 32])
    
    data = [d[0].data.cpu().numpy() for d in trainset]
    np.mean(data)
    
    0.4676536
    
    np.std(data)
    
    0.23926772
    
    # 图像增强
    transform_train = transforms.Compose([
        transforms.RandomCrop(32, padding=4),  #先四周填充0,再把图像随机裁剪成32*32
        transforms.RandomHorizontalFlip(),  #图像一半的概率翻转,一半的概率不翻转
        transforms.ToTensor(),
        transforms.Normalize((0.4731, 0.4822, 0.4465), (0.2212, 0.1994, 0.2010)), #R,G,B每层的归一化用到的均值和方差
    ])
    
    transform_test = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.4731, 0.4822, 0.4465), (0.2212, 0.1994, 0.2010)),
    ])
    

    导入数据集

    train_dir = '/home/kesci/input/CIFAR102891/cifar-10/train'
    test_dir = '/home/kesci/input/CIFAR102891/cifar-10/test'
    
    trainset = torchvision.datasets.ImageFolder(root=train_dir, transform=transform_train)
    trainloader = torch.utils.data.DataLoader(trainset, batch_size=256, shuffle=True)
    
    testset = torchvision.datasets.ImageFolder(root=test_dir, transform=transform_test)
    testloader = torch.utils.data.DataLoader(testset, batch_size=256, shuffle=False)
    
    classes = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'forg', 'horse', 'ship', 'truck']
    

    定义模型

    ResNet-18网络结构:ResNet全名Residual Network残差网络。Kaiming He 的《Deep Residual Learning for Image Recognition》获得了CVPR最佳论文。他提出的深度残差网络在2015年可以说是洗刷了图像方面的各大比赛,以绝对优势取得了多个比赛的冠军。而且它在保证网络精度的前提下,将网络的深度达到了152层,后来又进一步加到1000的深度。

    Image Name

    class ResidualBlock(nn.Module):   # 我们定义网络时一般是继承的torch.nn.Module创建新的子类
    
        def __init__(self, inchannel, outchannel, stride=1):
            super(ResidualBlock, self).__init__()
            #torch.nn.Sequential是一个Sequential容器,模块将按照构造函数中传递的顺序添加到模块中。
            self.left = nn.Sequential(
                nn.Conv2d(inchannel, outchannel, kernel_size=3, stride=stride, padding=1, bias=False), 
                # 添加第一个卷积层,调用了nn里面的Conv2d()
                nn.BatchNorm2d(outchannel), # 进行数据的归一化处理
                nn.ReLU(inplace=True), # 修正线性单元,是一种人工神经网络中常用的激活函数
                nn.Conv2d(outchannel, outchannel, kernel_size=3, stride=1, padding=1, bias=False),
                nn.BatchNorm2d(outchannel)
            )
            self.shortcut = nn.Sequential() 
            if stride != 1 or inchannel != outchannel:
                self.shortcut = nn.Sequential(
                    nn.Conv2d(inchannel, outchannel, kernel_size=1, stride=stride, bias=False),
                    nn.BatchNorm2d(outchannel)
                )
            #  便于之后的联合,要判断Y = self.left(X)的形状是否与X相同
    
        def forward(self, x): # 将两个模块的特征进行结合,并使用ReLU激活函数得到最终的特征。
            out = self.left(x)
            out += self.shortcut(x)
            out = F.relu(out)
            return out
    
    class ResNet(nn.Module):
        def __init__(self, ResidualBlock, num_classes=10):
            super(ResNet, self).__init__()
            self.inchannel = 64
            self.conv1 = nn.Sequential( # 用3个3x3的卷积核代替7x7的卷积核,减少模型参数
                nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False),
                nn.BatchNorm2d(64),
                nn.ReLU(),
            ) 
            self.layer1 = self.make_layer(ResidualBlock, 64,  2, stride=1)
            self.layer2 = self.make_layer(ResidualBlock, 128, 2, stride=2)
            self.layer3 = self.make_layer(ResidualBlock, 256, 2, stride=2)
            self.layer4 = self.make_layer(ResidualBlock, 512, 2, stride=2)
            self.fc = nn.Linear(512, num_classes)
    
        def make_layer(self, block, channels, num_blocks, stride):
            strides = [stride] + [1] * (num_blocks - 1)   #第一个ResidualBlock的步幅由make_layer的函数参数stride指定
            # ,后续的num_blocks-1个ResidualBlock步幅是1
            layers = []
            for stride in strides:
                layers.append(block(self.inchannel, channels, stride))
                self.inchannel = channels
            return nn.Sequential(*layers)
    
        def forward(self, x):
            out = self.conv1(x)
            out = self.layer1(out)
            out = self.layer2(out)
            out = self.layer3(out)
            out = self.layer4(out)
            out = F.avg_pool2d(out, 4)
            out = out.view(out.size(0), -1)
            out = self.fc(out)
            return out
    
    
    def ResNet18():
        return ResNet(ResidualBlock)
    

    训练和测试

    # 定义是否使用GPU
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    
    # 超参数设置
    EPOCH = 20   #遍历数据集次数
    pre_epoch = 0  # 定义已经遍历数据集的次数
    LR = 0.1        #学习率
    
    # 模型定义-ResNet
    net = ResNet18().to(device)
    
    # 定义损失函数和优化方式
    criterion = nn.CrossEntropyLoss()  #损失函数为交叉熵,多用于多分类问题
    optimizer = optim.SGD(net.parameters(), lr=LR, momentum=0.9, weight_decay=5e-4) 
    #优化方式为mini-batch momentum-SGD,并采用L2正则化(权重衰减)
    
    # 训练
    if __name__ == "__main__":
        print("Start Training, Resnet-18!")
        num_iters = 0
        for epoch in range(pre_epoch, EPOCH):
            print('
    Epoch: %d' % (epoch + 1))
            net.train()
            sum_loss = 0.0
            correct = 0.0
            total = 0
            for i, data in enumerate(trainloader, 0): 
                #用于将一个可遍历的数据对象(如列表、元组或字符串)组合为一个索引序列,同时列出数据和数据下标,
                #下标起始位置为0,返回 enumerate(枚举) 对象。
                
                num_iters += 1
                inputs, labels = data
                inputs, labels = inputs.to(device), labels.to(device)
                optimizer.zero_grad()  # 清空梯度
    
                # forward + backward
                outputs = net(inputs)
                loss = criterion(outputs, labels)
                loss.backward()
                optimizer.step()
    
                sum_loss += loss.item() * labels.size(0)
                _, predicted = torch.max(outputs, 1) #选出每一列中最大的值作为预测结果
                total += labels.size(0)
                correct += (predicted == labels).sum().item()
                # 每20个batch打印一次loss和准确率
                if (i + 1) % 20 == 0:
                    print('[epoch:%d, iter:%d] Loss: %.03f | Acc: %.3f%% '
                            % (epoch + 1, num_iters, sum_loss / (i + 1), 100. * correct / total))
    
        print("Training Finished, TotalEPOCH=%d" % EPOCH)
    
  • 相关阅读:
    NX二次开发-UFUN UF_UI_add_to_class_sel将UDOTestClass类的显示名称加入到类选择对话框的类列表中
    NX二次开发-UFUN创建管道UF_MODL_create_tube
    NX二次开发-UFUN获得工作视图的tag UF_VIEW_ask_work_view
    SQLyog/Mysql怎么修改用户/root密码【转载】
    MySQL返回来的值都是字符串类型,还原每个字段【转载】
    NX二次开发-NX访问MySQL数据库(增删改查)
    NX二次开发-ug表达式函数ug_find_file读取当前prt所在路径【转发】
    QT界面开发-QProgressBar【转载】
    QT界面开发-使用new QComboBox添加触发事件
    QT界面开发-窗口滚动条【转发】
  • 原文地址:https://www.cnblogs.com/hichens/p/12355048.html
Copyright © 2020-2023  润新知