• 可以多分类的神经网络


    '''
    11行神经网络① 
    层数可变,多类
    '''
    import numpy as np
    import matplotlib.pyplot as plt
    
    
    
    class BPNN(object):
        def __init__(self, neurals, epsilon=0.01, lamda=0.01):
            if not isinstance(neurals, list): raise '出错:参数 neurals 必须是 list 类型'
            self.neurals = neurals   # 各层神经元数目,如:[3,10,8,2]
            self.size = len(neurals)
            
            self.epsilon = epsilon  # 学习速率
            self.lamda = lamda      # 正则化强度
    
            self.w = [np.random.randn(i,j) for i,j in zip(neurals[:-1], neurals[1:])] + [None]
            self.b = [None] + [np.random.randn(1,j) for j in neurals[1:]]
            self.l = [None] * self.size
            self.l_delta = [None] * self.size
            
            self.probs = None
            
        # 前向传播
        def forward(self, X):
            self.l[0] = X
            for i in range(1, self.size-1):
                self.l[i] = np.tanh(np.dot(self.l[i-1], self.w[i-1]) + self.b[i]) # tanh 函数    
            self.l[-1] = np.exp(np.dot(self.l[-2], self.w[-2]) + self.b[-1])
            self.probs = self.l[-1] / np.sum(self.l[-1], axis=1, keepdims=True)
            
        # 后向传播
        def backward(self, y):
            self.l_delta[-1] = np.copy(self.probs)
            self.l_delta[-1][range(self.n_samples), y] -= 1
            for i in range(self.size-2, 0, -1):
                self.l_delta[i] = np.dot(self.l_delta[i+1], self.w[i].T) * (1 - np.power(self.l[i], 2)) # tanh 函数的导数
                
        # 更新权值、偏置
        def update(self):
            self.b[-1] -= self.epsilon * np.sum(self.l_delta[-1], axis=0, keepdims=True)
            for i in range(self.size-2, -1, -1):
                self.w[i] -= self.epsilon * (np.dot(self.l[i].T, self.l_delta[i+1]) + self.lamda * self.w[i])
                if i == 0: break
                self.b[i] -= self.epsilon * np.sum(self.l_delta[i], axis=0)
        
        # 计算损失
        def calculate_loss(self, y):
            loss = np.sum(-np.log(self.probs[range(self.n_samples), y]))
            loss += self.lamda/2 * np.sum([np.sum(np.square(wi)) for wi in self.w[:-1]]) # 可选
            loss *= 1/self.n_samples  # 可选
            return loss
        
        # 拟合
        def fit(self, X, y, n_iter=1000, print_loss=True):
            self.n_samples = X.shape[0] # 样本大小(样本数目)
            
            for i in range(n_iter):
                self.forward(X)
                self.backward(y)
                self.update()
                
                if not print_loss: continue
                if i%100 == 0: print(self.calculate_loss(y))
        
        # 预测
        def predict(self, x):
            self.forward(x)
            return np.argmax(self.probs, axis=1)
        
    
        
    def plot_decision_boundary(clf, X, y):
        # Set min and max values and give it some padding
        x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
        y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
        h = 0.01
        # Generate a grid of points with distance h between them
        xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
        # Predict the function value for the whole gid
        Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
        Z = Z.reshape(xx.shape)
        # Plot the contour and training examples
        plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
        plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Spectral)
        
        
    def test1():
        X = np.array([[0,0,1],[0,1,1],[1,0,1],[1,1,1]])
        #y = np.array([0,1,1,0]) # 两类
        y = np.array([0,1,2,3])  # 多类
        
        # bpnn = BPNN([3, 10, 8, 1])
        bpnn = BPNN([3, 10, 8, 4])
        bpnn.fit(X, y, n_iter=1000)
        
        print('训练结果:', bpnn.predict(X))
        
        
    def test2():
        from sklearn.datasets import make_moons
        from sklearn.linear_model import LogisticRegressionCV
        
        X, y = make_moons(200, noise=0.20)
        plt.scatter(X[:,0], X[:,1], s=40, c=y, cmap=plt.cm.Spectral)
        plt.show()
    
        clf = LogisticRegressionCV()
        clf.fit(X, y)
        plot_decision_boundary(clf, X, y)
        plt.show()
    
        #nn = BPNN([2,5,4,2])
        nn = BPNN([2,4,2])
        nn.fit(X, y, n_iter=1000)
        plot_decision_boundary(nn, X, y)
        plt.show()
        
        
        
    if __name__ == '__main__':
        #test1()
        test2()
    
        
  • 相关阅读:
    maven公共库
    java截取当前屏幕图片
    JAVE视频处理
    jar在maven仓库里面没有时 , 把jar导入本地仓库步骤
    3 .shell 之linux四剑客sed/grep/awk/find
    Spring学习(四)-基于注解的Bean管理
    Spring学习(三)-Bean的种类,作用域,生命周期
    Spring学习(一)-基本入门
    dubbo服务连接zookeeper报错:java.net.ConnectException: Connection refused
    idea-常用设置二
  • 原文地址:https://www.cnblogs.com/hhh5460/p/5434531.html
Copyright © 2020-2023  润新知