题面
题解
20pts
直接暴力统计即可,复杂度(O(NQ))。
另20pts
我们考虑动态点分治。
怎么在原树上统计答案呢,我们对点(x),
预处理出其子节点数目(s_0),其子树内每个点到(x)的距离和(s_1),以及其子树内每个点到(fa_x)的距离和(s_2)。
则每次我们暴跳父亲,显然(s_1[x]+sum s_1[fa]-s_2[p]+(s_0[fa]-s_0[p])*dis(fa,x))就是树上与(x)的(lca)
为(fa)的所有点的距离之和,其中(fa)为(p)的父亲,(p)为从(x)不断跳父亲直到根,那么只要不断枚举(fa),并不断往上跳并维护答案就可以了。
然而上面只是为了方便理解,因为具体的计算不是这样的。我们对于(x)点内部的贡献可以直接计算,然后考虑往上跳。在上述的式子中如果一个点(p)有(fa),那么答案就要减去(s_0[p]*dis(fa,x)+s_2[p]),如果一个点不是(x)那么答案就要加上(s_0[p]+dis(p,x)),然后每一个点都要加上自己的(sz_1)。
按这个规律在跳的时候不断加就好了。
然后在点分树上维护这个东西就好了,正确性显然。
再对于每个年龄维护一个东西,复杂度(O(20*Qlog n))。
100pts
其实上面讲得差不多了。
每个点维护一个(vector),对上述信息进行维护,将每个点的按年龄排序,统计距离的前缀和再分二分年龄即可。
时间复杂度(O(Qlog^2 n)),空间复杂度(O(nlog n))。
代码
C++11真的爽
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
using namespace std;
inline int gi() {
register int data = 0, w = 1;
register char ch = 0;
while (!isdigit(ch) && ch != '-') ch = getchar();
if (ch == '-') w = -1, ch = getchar();
while (isdigit(ch)) data = 10 * data + ch - '0', ch = getchar();
return w * data;
}
typedef long long ll;
const int INF = 1e9 + 5;
const int MAX_N = 1.5e5 + 5;
struct Graph { int to, cost, next; } e[MAX_N << 1]; int fir[MAX_N], e_cnt;
void clearGraph() { memset(fir, -1, sizeof(fir)); e_cnt = 0; }
void Add_Edge(int u, int v, int w) { e[e_cnt] = {v, w, fir[u]}; fir[u] = e_cnt++; }
struct Node { int age, dis; ll sum; } ;
inline bool operator < (const Node &l, const Node &r) {
if (l.age == r.age) return l.dis == r.dis ? l.sum < r.sum : l.dis < r.dis;
else return l.age < r.age;
}
vector<Node> vec[2][MAX_N];
int pos[MAX_N], cnt, lg[MAX_N << 1], bin[20];
int md[20][MAX_N << 1], dep[MAX_N];
void dfs(int x, int f) {
md[0][pos[x] = ++cnt] = dep[x];
for (int i = fir[x]; ~i; i = e[i].next) {
int v = e[i].to; if (v == f) continue;
dep[v] = dep[x] + e[i].cost;
dfs(v, x);
md[0][++cnt] = dep[x];
}
}
int dis(int u, int v) {
int tmp = dep[u] + dep[v];
u = pos[u], v = pos[v];
if (u > v) swap(u, v);
int k = lg[v - u + 1];
return tmp - (min(md[k][u], md[k][v - bin[k] + 1]) << 1ll);
}
int fa[MAX_N], size[MAX_N], centroid, rmx, sz;
bool used[MAX_N];
void search_centroid(int x, int f) {
int mx = 0; size[x] = 1;
for (int i = fir[x]; ~i; i = e[i].next) {
int v = e[i].to; if (v == f || used[v]) continue;
search_centroid(v, x); size[x] += size[v];
mx = max(mx, size[v]);
}
mx = max(mx, sz - size[x]);
if (mx < rmx) centroid = x, rmx = mx;
}
void Div(int x) {
used[x] = 1;
for (int i = fir[x]; ~i; i = e[i].next) {
int v = e[i].to; if (used[v]) continue;
rmx = sz = size[v];
centroid = v;
search_centroid(v, x);
fa[centroid] = x;
Div(centroid);
}
}
ll query(int x, int a) {
ll ans = 0;
for (int i = x; i; i = fa[i]) {
int t = lower_bound(vec[0][i].begin(), vec[0][i].end(), (Node){a, 0, 0})
- vec[0][i].begin() - 1;
ans += vec[0][i][t].sum + 1ll * t * dis(i, x);
}
for (int i = x; fa[i]; i = fa[i]) {
int t = lower_bound(vec[1][i].begin(), vec[1][i].end(), (Node){a, 0, 0})
- vec[1][i].begin() - 1;
ans -= vec[1][i][t].sum + 1ll * t * dis(fa[i], x);
}
return ans;
}
int N, Q, A, age[MAX_N];
int main () {
#ifndef ONLINE_JUDGE
freopen("cpp.in", "r", stdin);
#endif
clearGraph();
N = gi(), Q = gi(), A = gi();
for (int i = 1; i <= N; i++) age[i] = gi();
for (int i = 1; i < N; i++) {
int u = gi(), v = gi(), w = gi();
Add_Edge(u, v, w), Add_Edge(v, u, w);
}
dfs(1, 0);
bin[0] = 1; for (int i = 1; i < 20; i++) bin[i] = bin[i - 1] << 1;
for (int i = 1; bin[i] <= cnt; i++)
for (int j = 1; j + bin[i] - 1 <= cnt; j++)
md[i][j] = min(md[i - 1][j], md[i - 1][j + bin[i - 1]]);
for (int i = 2; i <= cnt; i++) lg[i] = lg[i >> 1] + 1;
sz = rmx = N;
search_centroid(1, 0);
Div(centroid);
for (int x = 1; x <= N; ++x)
for (int o = x; o; o = fa[o]) {
vec[0][o].push_back({age[x], dis(x, o), 0});
vec[1][o].push_back({age[x], dis(x, fa[o]), 0});
}
for (int x = 1; x <= N; ++x) {
for (int op = 0; op < 2; ++op) {
vec[op][x].push_back({-1, 0, 0});
vec[op][x].push_back({INF, 0, 0});
sort(vec[op][x].begin(), vec[op][x].end());
for (auto ite = vec[op][x].begin() + 1; ite != vec[op][x].end(); ++ite)
ite -> sum = (ite - 1) -> sum + ite -> dis;
}
}
for (ll ans = 0; Q--; ) {
int x = gi(), a = (ans + gi()) % A, b = (ans + gi()) % A;
if (a > b) swap(a, b);
printf("%lld
", ans = query(x, b + 1) - query(x, a));
}
return 0;
}