• 【BZOJ2154】Crash的数字表格


    【BZOJ2154】Crash的数字表格

    题面

    bzoj

    洛谷

    题解

    不妨设(nleq m)

    题目是求:

    [sum_{i=1}^nsum_{j=1}^mlcm(i,j) ]

    还是照常推式子qaq

    [sum_{i=1}^nsum_{j=1}^mfrac{ij}{gcd(i,j)}\ sum_{d=1}^nsum_{i=1}^nsum_{j=1}^m[gcd(i,j)==d]frac{ij}{d}\ sum_{d=1}^nsum_{i=1}^{n/d}sum_{j=1}^{m/d}[gcd(i,j)==1]ijd\ sum_{d=1}^ndsum_{i=1}^{n/d}sum_{j=1}^{m/d}[gcd(i,j)==1]ij ]

    暂时不管前面的,先搞后面的一坨

    (x=n/d,y=m/d)

    并且设

    [f(k)=sum_{i=1}^xsum_{j=1}^y[gcd(i,j)==k]ij\ g(k)=sum_{k|d}f(d) ]

    常见套路

    [g(k)=sum_{i=1}^xsum_{j=1}^y[k|gcd(i,j)]ij ]

    提出(k)

    [g(k)=k^2sum_{i=1}^{x/k}sum_{j=1}^{y/k}[1|gcd(i,j)]ij\ g(k)=k^2sum_{i=1}^{x/k}sum_{j=1}^{y/k}ij ]

    这个就是两个等差数列相乘。

    要求的东西变为

    [f(1)=sum_{i=1}^xmu(i)g(i) ]

    问题解决很多了,但是还必须要往下

    [ans=sum_{d=1}^ndsum_{i=1}^{n/d}sum_{j=1}^{m/d}[gcd(i,j)==1]ij ]

    看看(f(1))是什么

    [f(1)=sum_{i=1}^xmu(i)i^2sum_{i=1}^{x/d}sum_{j=1}^{y/d}ij ]

    里外都可以数论分块,总复杂度(O(n))

    #include <iostream>
    #include <cstdio>
    #include <cstdlib>
    #include <cstring> 
    #include <cmath> 
    #include <algorithm> 
    using namespace std;
    const int Mod = 20101009;
    const int MAX_N = 1e7 + 5; 
    int N = 1e7, M, mu[MAX_N], prime[MAX_N], num; 
    bool is_prime[MAX_N];
    int s[MAX_N]; 
    void sieve() {
        for (int i = 1; i <= N; i++) is_prime[i] = 1; 
        is_prime[1] = 0, mu[1] = 1; 
        for (int i = 2; i <= N; i++) {
            if (is_prime[i]) { prime[++num] = i, mu[i] = -1; }
            for (int j = 1; j <= num && i * prime[j] <= N; j++) { 
                is_prime[i * prime[j]] = 0; 
                if (i % prime[j]) mu[i * prime[j]] = -mu[i]; 
                else { mu[i * prime[j]] = 0; break; } 
            } 
        } 
    }
    int solve(int x, int y) { 
        int ans = 0;
        for (int l = 1, r; l <= x; l = r + 1) { 
            r = min(x / (x / l), y / (y / l)); 
            int res = 1ll * (1ll * (1 + x / l) * (x / l) / 2 % Mod) * (1ll * (1 + y / l) * (y / l) / 2 % Mod) % Mod;
            ans = (1ll * (s[r] - s[l - 1]) % Mod * res % Mod + ans) % Mod; 
        }
        return (ans + Mod) % Mod; 
    } 
    int main () {
        sieve(); 
        cin >> N >> M;
        if (N > M) swap(N, M); 
        for (int i = 1; i <= N; i++) s[i] = (s[i - 1] + 1ll * i * i % Mod * mu[i] % Mod + Mod) % Mod;
        int ans = 0; 
        for (int l = 1, r; l <= N; l = r + 1) { 
            r = min(N / (N / l), M / (M / l)); 
            int res = 1ll * (l + r) * (r - l + 1) / 2 % Mod; 
            ans = (ans + 1ll * solve(N / l, M / l) * res % Mod) % Mod; 
        }
        printf("%d
    ", ans); 
        return 0; 
    } 
    
  • 相关阅读:
    6 15种对抗攻击的防御方法
    5 12种生成对抗样本的方法
    4 基于优化的攻击——CW
    3 基于梯度的攻击——MIM
    Hibernate 5 Maven 仓库的 Artifacts
    Hibernate 5 发行组件下载
    Hibernate 5 的模块/包(modules/artifacts)
    Hibernate 5 开始使用指南前言
    Git 如何针对项目修改本地提交提交人的信息
    Spring Batch 4.2 新特性
  • 原文地址:https://www.cnblogs.com/heyujun/p/10189750.html
Copyright © 2020-2023  润新知