• Pre-Post


    题目描述

    We are all familiar with pre-order, in-order and post-order traversals of binary trees. A common problem in data structure classes is to find the pre-order traversal of a binary tree when given the in-order and post-order traversals. Alternatively, you can find the post-order traversal when given the in-order and pre-order. However, in general you cannot determine the in-order traversal of a tree when given its pre-order and post-order traversals. Consider the four binary trees below:
    All of these trees have the same pre-order and post-order traversals. This phenomenon is not restricted to binary trees, but holds for general m-ary trees as well.

    输入描述:

    Input will consist of multiple problem instances. Each instance will consist of a line of the form m s1 s2, indicating that the trees are m-ary trees, s1 is the pre-order traversal and s2 is the post-order traversal.All traversal strings will consist of lowercase alphabetic characters. For all input instances, 1 <= m <= 20 and the length of s1 and s2 will be between 1 and 26 inclusive. If the length of s1 is k (which is the same as the length of s2, of course), the first k letters of the alphabet will be used in the strings. An input line of 0 will terminate the input.

    输出描述:

    For each problem instance, you should output one line containing the number of possible trees which would result in the pre-order and post-order traversals for the instance. All output values will be within the range of a 32-bit signed integer. For each problem instance, you are guaranteed that there is at least one tree with the given pre-order and post-order traversals.
    示例1

    输入

    2 abc cba
    2 abc bca
    10 abc bca
    13 abejkcfghid jkebfghicda
    

    输出

    4
    1
    45
    207352860

    题目链接:Pre-Post

    参考资料:大佬链接

    最终AC代码:

    #include <bits/stdc++.h>
    using namespace std;
    int m;
    int C(int n, int m){
        int cnt=1;
        for(int i=1; i<=n; i++) cnt= cnt * (m - i + 1) / i; //刚好累计的cnt可以整除递增的i故采用int
        return cnt;
    }
    int getAns(char *pre, char *post, int len){
        if(len == 1) return 1;
        int i, j, n=0, cnt=1;
        for(i=1, j=0; i<len; i=j+2){
            for( ; j<len; j++) if(pre[i] == post[j]) break;
            cnt *= getAns(pre+i, post+i-1, j-i+2); //注意这里递归访问时 第二项参数是post+i-1 而不是post
            n++;
        }
        return cnt*C(n, m);
    }
    int main(){
        char pre[25], post[25];
        while(~scanf("%d %s %s", &m, pre, post)){
            printf("%d
    ", getAns(pre, post, strlen(pre)));
        }
        return 0;
    }

    总结:目前还不是完全理解这个题目,详细的分析可见牛客网评论区。先将本题记录下来,用以日后复习巩固时用。等到之后有了新的感悟,再来更新本题总结。

  • 相关阅读:
    测试阅读量
    JS中的 length, var i = [1,2]; i[length], 与 i.length, i["length"]的区别
    微信小程序:button组件的边框
    mongo学习笔记
    C言语语法总结(随时更新)
    Vim 常用命令总结
    php 文件操作
    git常用命令
    递归方式转迭代方式
    ECMAScript6 ES6 ES2015新语法总结
  • 原文地址:https://www.cnblogs.com/heyour/p/12759014.html
Copyright © 2020-2023  润新知