• hdu4325 Flowers


    Problem Description
    As is known to all, the blooming time and duration varies between different kinds of flowers. Now there is a garden planted full of flowers. The gardener wants to know how many flowers will bloom in the garden in a specific time. But there are too many flowers in the garden, so he wants you to help him.
     

    Input
    The first line contains a single integer t (1 <= t <= 10), the number of test cases.
    For each case, the first line contains two integer N and M, where N (1 <= N <= 10^5) is the number of flowers, and M (1 <= M <= 10^5) is the query times. 
    In the next N lines, each line contains two integer Si and Ti (1 <= Si <= Ti <= 10^9), means i-th flower will be blooming at time [Si, Ti].
    In the next M lines, each line contains an integer Ti, means the time of i-th query.
     

    Output
    For each case, output the case number as shown and then print M lines. Each line contains an integer, meaning the number of blooming flowers.
    Sample outputs are available for more details.
     

    Sample Input
    2 1 1 5 10 4 2 3 1 4 4 8 1 4 6
     

    Sample Output
    Case #1: 0 Case #2: 1 2

    1

    这题需要用到离散化,因为10^9建立线段树会超时,而给的数字总共只有2*n+m,所以可以先离散化,(这里注意因为最后询问的时候所查询的时间可能没有在前n对出现,如果只对n对数字离散化,后面询问的时候会出错),我的离散化是先构造一个结构体储存输入的2*n+m的数的数字num和编号id,然后对关键词num排序,去重后用map<int,int>匹配编号,匹配完后再对id排序复原。离散化的另一个方法是定义一个结构体记录数的id(编号),num(数的大小),先根据num排序,然后依次赋值为i,最后再按id排序。

    #include<iostream>
    #include<stdio.h>
    #include<string.h>
    #include<math.h>
    #include<vector>
    #include<map>
    #include<queue>
    #include<stack>
    #include<string>
    #include<algorithm>
    using namespace std;
    #define maxn 300006
    int sum,pos[maxn];
    struct node{
    	int l,r,sum;
    }b[4*maxn];
    
    struct edge{
    	int id,num;
    }a[maxn];
    
    bool cmp1(edge a,edge b){
    	return a.num<b.num;
    }
    bool cmp2(edge a,edge b){
    	return a.id<b.id;
    }
    
    void build(int l,int r,int i)
    {
    	int mid;
    	b[i].l=l;b[i].r=r;b[i].sum=0;
    	if(l==r)return;
    	mid=(l+r)/2;
    	build(l,mid,i*2);
    	build(mid+1,r,i*2+1);
    }
    
    void update(int l,int r,int i)
    {
    	int mid;
    	if(b[i].l==l && b[i].r==r){
    		b[i].sum++;return;
    	}
    	mid=(b[i].l+b[i].r)/2;
    	if(r<=mid)update(l,r,i*2);
    	else if(l>mid)update(l,r,i*2+1);
    	else {
    		update(l,mid,i*2);
    		update(mid+1,r,i*2+1);
    	}
    }
    
    void question(int id,int i)
    {
    	int mid;
    	if(b[i].l==b[i].r){
    		sum=b[i].sum;return;
    	}
    	b[i*2].sum+=b[i].sum;
    	b[i*2+1].sum+=b[i].sum;
    	b[i].sum=0;
    	mid=(b[i].l+b[i].r)/2;
    	if(id<=mid)question(id,i*2);
    	else question(id,i*2+1);
    }
    
    int main()
    {
    	int n,m,i,j,T,h,c,d,t;
    	map<int,int>hash;
    	scanf("%d",&T);
    	for(h=1;h<=T;h++){
    		printf("Case #%d:
    ",h);
    		scanf("%d%d",&n,&m);
    		build(1,maxn,1);
    		for(i=1;i<=n;i++){
    			scanf("%d%d",&a[i].num,&a[i+n].num);
    			a[i].id=i;a[i+n].id=i+n;
    		}
    		for(i=1;i<=m;i++){
    			scanf("%d",&a[i+2*n].num);
    			a[i+2*n].id=i+2*n;
    		}
    		sort(a+1,a+2*n+m+1,cmp1);
    		hash[a[1].num]=1;t=1;
    		for(i=2;i<=2*n+m;i++){
    			if(a[i].num!=a[i-1].num){
    				t++;hash[a[i].num]=t;
    			}
    		}
    		sort(a+1,a+2*n+m+1,cmp2);
    		for(i=1;i<=n;i++){
    			c=hash[a[i].num];d=hash[a[i+n].num];
    			//printf("%d %d
    ",c,d);
    			update(c,d,1);
    		}
    		
    		for(i=1;i<=m;i++){
    			c=hash[a[i+2*n].num];
    			sum=0;
    			question(c,1);
    			printf("%d
    ",sum);
    		}
    	}
    	return 0;
    }


  • 相关阅读:
    Selenium 元素定位方法小结
    java OpenCV挑战极验滑动拼图验证码
    使用java + selenium + OpenCV破解腾讯防水墙滑动验证码
    Java轻松破解顶象滑动拼图验证码
    Java中的chromedriver把Selenium的焦点转移到新窗口
    java 破解滑动拼图验证码(opencv+chromedriver+selenium )
    selenium+java破解极验滑块验证码
    Appium 本地编译 chromedriver 历程记录
    关闭 ChromeDriver was started successfully 提示信息
    Selenium执行完毕未关闭chromedriver/geckodriver进程的解决办法(java版)
  • 原文地址:https://www.cnblogs.com/herumw/p/9464780.html
Copyright © 2020-2023  润新知