Problem Description
As is known to all, the blooming time and duration varies between different kinds of flowers. Now there is a garden planted full of flowers. The gardener wants to know how many flowers will bloom in the garden in a specific time. But there are too many flowers
in the garden, so he wants you to help him.
Input
The first line contains a single integer t (1 <= t <= 10), the number of test cases.
For each case, the first line contains two integer N and M, where N (1 <= N <= 10^5) is the number of flowers, and M (1 <= M <= 10^5) is the query times.
In the next N lines, each line contains two integer Si and Ti (1 <= Si <= Ti <= 10^9), means i-th flower will be blooming at time [Si, Ti].
In the next M lines, each line contains an integer Ti, means the time of i-th query.
For each case, the first line contains two integer N and M, where N (1 <= N <= 10^5) is the number of flowers, and M (1 <= M <= 10^5) is the query times.
In the next N lines, each line contains two integer Si and Ti (1 <= Si <= Ti <= 10^9), means i-th flower will be blooming at time [Si, Ti].
In the next M lines, each line contains an integer Ti, means the time of i-th query.
Output
For each case, output the case number as shown and then print M lines. Each line contains an integer, meaning the number of blooming flowers.
Sample outputs are available for more details.
Sample outputs are available for more details.
Sample Input
2
1 1
5 10
4
2 3
1 4
4 8
1
4
6
Sample Output
Case #1:
0
Case #2:
1
2
1
这题需要用到离散化,因为10^9建立线段树会超时,而给的数字总共只有2*n+m,所以可以先离散化,(这里注意因为最后询问的时候所查询的时间可能没有在前n对出现,如果只对n对数字离散化,后面询问的时候会出错),我的离散化是先构造一个结构体储存输入的2*n+m的数的数字num和编号id,然后对关键词num排序,去重后用map<int,int>匹配编号,匹配完后再对id排序复原。离散化的另一个方法是定义一个结构体记录数的id(编号),num(数的大小),先根据num排序,然后依次赋值为i,最后再按id排序。
#include<iostream>
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<queue>
#include<stack>
#include<string>
#include<algorithm>
using namespace std;
#define maxn 300006
int sum,pos[maxn];
struct node{
int l,r,sum;
}b[4*maxn];
struct edge{
int id,num;
}a[maxn];
bool cmp1(edge a,edge b){
return a.num<b.num;
}
bool cmp2(edge a,edge b){
return a.id<b.id;
}
void build(int l,int r,int i)
{
int mid;
b[i].l=l;b[i].r=r;b[i].sum=0;
if(l==r)return;
mid=(l+r)/2;
build(l,mid,i*2);
build(mid+1,r,i*2+1);
}
void update(int l,int r,int i)
{
int mid;
if(b[i].l==l && b[i].r==r){
b[i].sum++;return;
}
mid=(b[i].l+b[i].r)/2;
if(r<=mid)update(l,r,i*2);
else if(l>mid)update(l,r,i*2+1);
else {
update(l,mid,i*2);
update(mid+1,r,i*2+1);
}
}
void question(int id,int i)
{
int mid;
if(b[i].l==b[i].r){
sum=b[i].sum;return;
}
b[i*2].sum+=b[i].sum;
b[i*2+1].sum+=b[i].sum;
b[i].sum=0;
mid=(b[i].l+b[i].r)/2;
if(id<=mid)question(id,i*2);
else question(id,i*2+1);
}
int main()
{
int n,m,i,j,T,h,c,d,t;
map<int,int>hash;
scanf("%d",&T);
for(h=1;h<=T;h++){
printf("Case #%d:
",h);
scanf("%d%d",&n,&m);
build(1,maxn,1);
for(i=1;i<=n;i++){
scanf("%d%d",&a[i].num,&a[i+n].num);
a[i].id=i;a[i+n].id=i+n;
}
for(i=1;i<=m;i++){
scanf("%d",&a[i+2*n].num);
a[i+2*n].id=i+2*n;
}
sort(a+1,a+2*n+m+1,cmp1);
hash[a[1].num]=1;t=1;
for(i=2;i<=2*n+m;i++){
if(a[i].num!=a[i-1].num){
t++;hash[a[i].num]=t;
}
}
sort(a+1,a+2*n+m+1,cmp2);
for(i=1;i<=n;i++){
c=hash[a[i].num];d=hash[a[i+n].num];
//printf("%d %d
",c,d);
update(c,d,1);
}
for(i=1;i<=m;i++){
c=hash[a[i+2*n].num];
sum=0;
question(c,1);
printf("%d
",sum);
}
}
return 0;
}