Problem Description
单身!
依然单身!
吉哥依然单身!
DS级码农吉哥依然单身!
所以,他生平最恨情人节,不管是214还是77,他都讨厌!
吉哥观察了214和77这两个数,发现:
2+1+4=7
7+7=7*2
77=7*11
最终,他发现原来这一切归根到底都是因为和7有关!所以,他现在甚至讨厌一切和7有关的数!
什么样的数和7有关呢?
如果一个整数符合下面3个条件之一,那么我们就说这个整数和7有关——
1、整数中某一位是7;
2、整数的每一位加起来的和是7的整数倍;
3、这个整数是7的整数倍;
现在问题来了:吉哥想知道在一定区间内和7无关的数字的平方和。
依然单身!
吉哥依然单身!
DS级码农吉哥依然单身!
所以,他生平最恨情人节,不管是214还是77,他都讨厌!
吉哥观察了214和77这两个数,发现:
2+1+4=7
7+7=7*2
77=7*11
最终,他发现原来这一切归根到底都是因为和7有关!所以,他现在甚至讨厌一切和7有关的数!
什么样的数和7有关呢?
如果一个整数符合下面3个条件之一,那么我们就说这个整数和7有关——
1、整数中某一位是7;
2、整数的每一位加起来的和是7的整数倍;
3、这个整数是7的整数倍;
现在问题来了:吉哥想知道在一定区间内和7无关的数字的平方和。
Input
输入数据的第一行是case数T(1 <= T <= 50),然后接下来的T行表示T个case;每个case在一行内包含两个正整数L, R(1 <= L <= R <= 10^18)。
Output
请计算[L,R]中和7无关的数字的平方和,并将结果对10^9 + 7 求模后输出。
Sample Input
3
1 9
10 11
17 17
Sample Output
236
221
0
感悟:数位dp还是用记忆化搜索好。
思路:用dp[i][j][k]表示第i位(这里的前i位指的是从len位循环到第i位的状态)前面几位位数和%7的值为j,前面所代表十进制数%7的状态。这个状态用一个结构体node 表示,node里面记录的是这个状态下后面符合条件的数的个数,和,平方和。为什么要记录这三个呢?是因为平方和能用它们三个表示。对于一个十进制数,比如756,756^2=(700+56)^2=700^2+56^2+2*700*56,所以就可以推得规律:
ans.cnt+=temp.cnt;
ans.sum+=temp.cnt*j*p[pos-1 ]+temp.sum; //p[pos-1]=10^(pos-1)
ans.sqsum+=temp.sqsum+2*(p[pos-1]*temp.sum*j)+p[pos-1]*p[pos-1]*temp.cnt*j*j;
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<bitset>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef long double ldb;
#define inf 99999999
#define pi acos(-1.0)
#define MOD 1000000007
struct node{
ll cnt; //个数
ll sum; //总和
ll sqsum; //所有符合数的前面部分平方和
}dp[25][11][11]; //前i位,位数和%7为j,值和%7为k
ll p[25];
void init(){
int i,j;
p[0]=1;
for(i=1;i<=20;i++){
p[i]=(p[i-1]*10)%MOD;
}
}
int wei[30];
node dfs(ll pos,ll num,ll sum,ll flag)
{
int i,j;
node ans;
ans.cnt=ans.sum=ans.sqsum=0;
if(pos==0){
if(flag=1 && num!=0 && sum!=0){
ans.cnt=1;
}
return ans;
}
if(!flag && dp[pos][num][sum].cnt!=-1){
return dp[pos][num][sum];
}
int ed;
if(flag)ed=wei[pos];
else ed=9;
for(j=0;j<=ed;j++){
if(j==7)continue;
node temp=dfs(pos-1,(j+num)%7,(sum*10+j)%7,flag&&(j==ed) );
ans.cnt+=temp.cnt;
ans.cnt%=MOD;
ans.sum+=(temp.cnt*j%MOD*p[pos-1 ]%MOD+temp.sum )%MOD;
ans.sum%=MOD;
ans.sqsum+=(temp.sqsum+2*(p[pos-1]*temp.sum%MOD*j)%MOD )%MOD;
ans.sqsum%=MOD;
ans.sqsum+=(p[pos-1]*p[pos-1]%MOD*temp.cnt%MOD*j*j)%MOD;
ans.sqsum%=MOD;
}
if(!flag){
dp[pos][num][sum]=ans;
}
return ans;
}
node solve(ll x)
{
int i,j,k,len=0;
ll t=x;
while(t){
wei[++len]=t%10;
t/=10;
}
for(i=0;i<20;i++){
for(j=0;j<9;j++){
for(k=0;k<9;k++){
dp[i][j][k].cnt=-1;
}
}
}
return dfs(len,0,0,1);
}
int main()
{
int i,j,T;
ll n,m;
init();
scanf("%d",&T);
while(T--)
{
scanf("%lld%lld",&m,&n);
printf("%lld
",((solve(n).sqsum-solve(m-1).sqsum)%MOD+MOD)%MOD );
}
}