• yolov5单图片检测


    yolov5单图片检测

    import argparse
    import time
    from pathlib import Path
    
    import cv2
    import torch
    import torch.backends.cudnn as cudnn
    from numpy import random
    
    import numpy as np
    
    import requests
    from models.experimental import attempt_load
    
    from utils.datasets import LoadStreams,LoadStreams2, LoadImages,LoadWebcam,letterbox
    
    from utils.general import check_img_size, check_requirements, non_max_suppression, apply_classifier, scale_coords, 
        xyxy2xywh, strip_optimizer, set_logging, increment_path
    from utils.plots import plot_one_box
    from utils.torch_utils import select_device, load_classifier, time_synchronized
    
    
    device = select_device('')
    augment = False
    conf_thres=0.15
    iou_thres=0.25
    model = attempt_load('yolov5s.pt', map_location=device)
    img_size = 640
    
    names = model.module.names if hasattr(model, 'module') else model.names
    colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
    
    
    def detectionObjectFunction():
        #vc = cv2.VideoCapture(2)
        #rval, frame = vc.read()
        #rval, cameraImg = vc.read()
        img_file = requests.get("http://182.61.200.6/pic/20210621/20210621161706340.jpg")
        cameraImg = cv2.imdecode(np.fromstring(img_file.content, np.uint8), 1)
        
        
        img = letterbox(cameraImg, new_shape=img_size)[0]
        # Convert
        img = img[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416
        img = np.ascontiguousarray(img)
    
        ####################################################
        img = torch.from_numpy(img).to(device)
        #img = img.half() if half else img.float()  # uint8 to fp16/32
        im0 = cameraImg.copy()
        
        img = img.half()
        img = img.float()
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)
    
        # Inference
        t1 = time_synchronized()
        pred = model(img, augment=augment)[0]
        #pred = model(img, augment=opt.augment)[0]
    
        #print('thres:%d '%conf_thres)
        # Apply NMS
        pred = non_max_suppression(pred, conf_thres, iou_thres)
        #def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, labels=()):
        t2 = time_synchronized()
        
        # Apply Classifier
        
        # Process detections
        for i, det in enumerate(pred):  # detections per image
            # batch_size >= 1
            #if webcam:  
            #    p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
            #else:
            #    p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
            #    
            #p = Path(p)  # to Path
            #save_path = str(save_dir / p.name)  # img.jpg
            #txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}')  # img.txt
            #s += '%gx%g ' % img.shape[2:]  # print string
    
            # normalization gain whwh
            #gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
                
                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    #s += f'{n} {names[int(c)]}s, '  # add to string
        
                # Write results
                for *xyxy, conf, cls in reversed(det):
                    
                    
                    label = f'{names[int(cls)]} {conf:.2f}'
                    #plot_one_box2(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=2)
                    #plot_one_box2(xyxy, im0, label=label, color=(0,255,0), line_thickness=2)
                    #plot_one_box(xyxy, im0, label=label, color=(0,255,0), line_thickness=2)
                    plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=2)
                
            # Print time (inference + NMS)
            print(f'detection time. ({t2 - t1:.3f}s)')
    
            # Stream results
            #if view_img:
            cv2.imshow("win1", im0)
            cv2.imwrite("2021062112.jpg",im0)
            #img2 = im0.copy()
                
    
    
            ####################################################
            #pass
    
    
    
    detectionObjectFunction()

    ################

    QQ 3087438119
  • 相关阅读:
    thinkphp的钩子的两种配置和两种调用方法
    php闭包实现函数的自调用,也是递归
    php的spl_autoload_register函数的一点个人见解
    详解js变量、作用域及内存
    关于js的call()和apply()两个函数的一点个人看法
    php实现斐波那契数列以及由此引起的联想
    php猴子称王或者约瑟夫难题
    Linux Bash Shell 快速入门
    Fedora14下首次搭建Samba服务器遇到的一些问题
    【JavaScript】我的JavaScript技术总结第一篇——编程细节
  • 原文地址:https://www.cnblogs.com/herd/p/14943266.html
Copyright © 2020-2023  润新知