Synchronized 和 Lock 的主要区别Synchronzied 和 Lock 的主要区别如下:
存在层面:Syncronized 是Java 中的一个关键字,存在于 JVM 层面,Lock 是 Java 中的一个接口
锁的释放条件:1. 获取锁的线程执行完同步代码后,自动释放;2. 线程发生异常时,JVM会让线程释放锁;Lock 必须在
finally 关键字中释放锁,不然容易造成线程死锁
锁的获取: 在 Syncronized 中,假设线程 A 获得锁,B 线程等待。如果 A 发生阻塞,那么 B 会一直等待。在 Lock 中,会分
情况而定,Lock 中有尝试获取锁的方法,如果尝试获取到锁,则不用一直等待
锁的状态:Synchronized 无法判断锁的状态,Lock 则可以判断
锁的类型:Synchronized 是可重入,不可中断,非公平锁;Lock 锁则是 可重入,可判断,可公平锁
锁的性能:Synchronized 适用于少量同步的情况下,性能开销比较大。Lock 锁适用于大量同步阶段:
Lock 锁可以提高多个线程进行读的效率(使用 readWriteLock)
在竞争不是很激烈的情况下,Synchronized的性能要优于ReetrantLock,但是在资源竞争很激烈的情况下,Synchronized的性能
会下降几十倍,但是ReetrantLock的性能能维持常态;
ReetrantLock 提供了多样化的同步,比如有时间限制的同步,可以被Interrupt的同步(synchronized的同步是不能Interrupt
的)等。
Lock类型
一、公平锁/非公平锁
公平锁是指多个线程按照申请锁的顺序来获取锁。
非公平锁是指多个线程获取锁的顺序并不是按照申请锁的顺序,有可能后申请的线程比先申请的线程优先获取锁。有可能,会造成优先级反转或者饥饿现象。
对于ReentrantLock而言,通过构造函数指定该锁是否是公平锁,默认是非公平锁。非公平锁的优点在于吞吐量比公平锁大。
对于Synchronized而言,也是一种非公平锁。由于其并不像ReentrantLock是通过AQS的来实现线程调度,所以并没有任何办法使其变成公平锁。
二、可重入锁
可重入锁又名递归锁,是指在同一个线程在外层方法获取锁的时候,在进入内层方法会自动获取锁。
说的有点抽象,下面会有一个代码的示例。
对于Java ReentrantLock而言, 他的名字就可以看出是一个可重入锁,其名字是Re entrant Lock重新进入锁。
对于Synchronized而言,也是一个可重入锁。可重入锁的一个好处是可一定程度避免死锁。
三、独享锁/共享锁
独享锁是指该锁一次只能被一个线程所持有。
共享锁是指该锁可被多个线程所持有。
对于Java ReentrantLock而言,其是独享锁。但是对于Lock的另一个实现类ReadWriteLock,其读锁是共享锁,其写锁是独享锁。
读锁的共享锁可保证并发读是非常高效的,读写,写读 ,写写的过程是互斥的。
独享锁与共享锁也是通过AQS来实现的,通过实现不同的方法,来实现独享或者共享。
对于Synchronized而言,当然是独享锁。
四、互斥锁/读写锁
上面讲的独享锁/共享锁就是一种广义的说法,互斥锁/读写锁就是具体的实现。
互斥锁在Java中的具体实现就是ReentrantLock
读写锁在Java中的具体实现就是ReadWriteLock
五、乐观锁/悲观锁
乐观锁与悲观锁不是指具体的什么类型的锁,而是指看待并发同步的角度。
悲观锁认为对于同一个数据的并发操作,一定是会发生修改的,哪怕没有修改,也会认为修改。因此对于同一个数据的并发操作,悲观锁采取加锁的形式。悲观的认为,不加锁的并发操作一定会出问题。
乐观锁则认为对于同一个数据的并发操作,是不会发生修改的。在更新数据的时候,会采用尝试更新,不断重新的方式更新数据。乐观的认为,不加锁的并发操作是没有事情的。
从上面的描述我们可以看出,悲观锁适合写操作非常多的场景,乐观锁适合读操作非常多的场景,不加锁会带来大量的性能提升。
悲观锁在Java中的使用,就是利用各种锁。
乐观锁在Java中的使用,是无锁编程,常常采用的是CAS算法,典型的例子就是原子类,通过CAS自旋实现原子操作的更新。
六、分段锁
分段锁其实是一种锁的设计,并不是具体的一种锁,对于ConcurrentHashMap而言,其并发的实现就是通过分段锁的形式来实现高效的并发操作。
我们以ConcurrentHashMap来说一下分段锁的含义以及设计思想,ConcurrentHashMap中的分段锁称为Segment,它即类似于HashMap(JDK7与JDK8中HashMap的实现)的结构,即内部拥有一个Entry数组,数组中的每个元素又是一个链表;同时又是一个ReentrantLock(Segment继承了ReentrantLock)。
当需要put元素的时候,并不是对整个hashmap进行加锁,而是先通过hashcode来知道他要放在那一个分段中,然后对这个分段进行加锁,所以当多线程put的时候,只要不是放在一个分段中,就实现了真正的并行的插入。
但是,在统计size的时候,可就是获取hashmap全局信息的时候,就需要获取所有的分段锁才能统计。
分段锁的设计目的是细化锁的粒度,当操作不需要更新整个数组的时候,就仅仅针对数组中的一项进行加锁操作。
七、偏向锁/轻量级锁/重量级锁
这三种锁是指锁的状态,并且是针对Synchronized。在Java 5通过引入锁升级的机制来实现高效Synchronized。这三种锁的状态是通过对象监视器在对象头中的字段来表明的。
偏向锁是指一段同步代码一直被一个线程所访问,那么该线程会自动获取锁。降低获取锁的代价。
轻量级锁是指当锁是偏向锁的时候,被另一个线程所访问,偏向锁就会升级为轻量级锁,其他线程会通过自旋的形式尝试获取锁,不会阻塞,提高性能。
重量级锁是指当锁为轻量级锁的时候,另一个线程虽然是自旋,但自旋不会一直持续下去,当自旋一定次数的时候,还没有获取到锁,就会进入阻塞,该锁膨胀为重量级锁。重量级锁会让其他申请的线程进入阻塞,性能降低。
八、自旋锁
在Java中,自旋锁是指尝试获取锁的线程不会立即阻塞,而是采用循环的方式去尝试获取锁,这样的好处是减少线程上下文切换的消耗,缺点是循环会消耗CPU。
线程自旋和适应性自旋
我们知道,java线程其实是映射在内核之上的,线程的挂起和恢复会极大的影响开销。
并且jdk官方人员发现,很多线程在等待锁的时候,在很短的一段时间就获得了锁,所以它们在线程等待的时候,并不需要把线程挂起,而是让他无目的的循环,一般设置10次。
这样就避免了线程切换的开销,极大的提升了性能。
而适应性自旋,是赋予了自旋一种学习能力,它并不固定自旋10次一下。
他可以根据它前面线程的自旋情况,从而调整它的自旋,甚至是不经过自旋而直接挂起。