• Elasticsearch 聚合操作


    数据准备:

    PUT /shop
    {
      "settings": {
        "number_of_shards": 3,
        "number_of_replicas": 2
      }
    }
    
    PUT /shop/_mapping/goods
    {
      "properties": {
        "brand": {
          "type": "keyword"
        },
        "price": {
          "type": "float"
        },
        "model": {
          "type": "keyword"
        }
      }
    }
    
    POST /shop/goods/_bulk
    {"index": {}}
    {"price" : 2299.00, "model" : "小米8", "brand" : "小米"}
    {"index": {}}
    {"price" : 4499.00, "model" : "Mate 20", "brand" : "华为"}
    {"index": {}}
    {"price" : 3299.00, "model" : "小米Mix3", "brand" : "小米"}
    {"index": {}}
    {"price" : 1199.00, "model" : "荣耀9i", "brand" : "华为"}
    {"index": {}}
    {"price" : 2799.00, "model" : "R17", "brand" : "OPPO"}
    {"index": {}}
    {"price" : 729.00, "model" : "红米6", "brand" : "小米"}
    {"index": {}}
    {"price" : 2799.00, "model" : "X23", "brand" : "VIVO"}
    {"index": {}}
    {"price" : 1799.00, "model" : "K1", "brand" : "OPPO"}

    一、聚合为桶

    按照手机的品牌brand划分为桶

    查询指令:

    GET /shop/_search
    {
      "size": 0, 
      "aggs": {
        "brand_aggs": {
          "terms": {
            "field": "brand"
          }
        }
      }
    }

    - size: 查询条数,这里设置为0,因为我们不关心搜索到的数据,只关心聚合结果,提高效率
    - aggs:声明这是一个聚合查询,是aggregations的缩写
      - popular_colors:给这次聚合起一个名字,任意。
        - terms:划分桶的方式,这里是根据词条划分
          - field:划分桶的字段

    查询结果:

    {
      "took": 6,
      "timed_out": false,
      "_shards": {
        "total": 3,
        "successful": 3,
        "skipped": 0,
        "failed": 0
      },
      "hits": {
        "total": 8,
        "max_score": 0,
        "hits": []
      },
      "aggregations": {
        "brand_aggs": {
          "doc_count_error_upper_bound": 0,
          "sum_other_doc_count": 0,
          "buckets": [
            {
              "key": "小米",
              "doc_count": 3
            },
            {
              "key": "OPPO",
              "doc_count": 2
            },
            {
              "key": "华为",
              "doc_count": 2
            },
            {
              "key": "VIVO",
              "doc_count": 1
            }
          ]
        }
      }
    }

    - hits:查询结果为空,因为我们设置了size为0
    - aggregations:聚合的结果
      - brand_aggs:我们定义的聚合名称
        - buckets:查找到的桶,每个不同的brand字段值都会形成一个桶
          - key:这个桶对应的brand字段的值
          - doc_count:这个桶中的文档数量

    二、桶内度量

    为聚合结果添加求价格平均值的度量

    查询指令:

    GET /shop/_search
    {
      "size": 0, 
      "aggs": {
        "brand_aggs": {
          "terms": {
            "field": "brand"
          },
          "aggs": {
            "price_aggs": {
              "avg": {
                "field": "price"
              }
            }
          }
        }
      }
    }

    - aggs:我们在上一个aggs(brand_aggs)中添加新的aggs。可见度量也是一个聚合
      - price_aggs:聚合的名称
        - avg:度量的类型,这里是求平均值
          - field:度量运算的字段

    查询结果:

    {
      "took": 5,
      "timed_out": false,
      "_shards": {
        "total": 3,
        "successful": 3,
        "skipped": 0,
        "failed": 0
      },
      "hits": {
        "total": 8,
        "max_score": 0,
        "hits": []
      },
      "aggregations": {
        "brand_aggs": {
          "doc_count_error_upper_bound": 0,
          "sum_other_doc_count": 0,
          "buckets": [
            {
              "key": "小米",
              "doc_count": 3,
              "price_aggs": {
                "value": 2109
              }
            },
            {
              "key": "OPPO",
              "doc_count": 2,
              "price_aggs": {
                "value": 2299
              }
            },
            {
              "key": "华为",
              "doc_count": 2,
              "price_aggs": {
                "value": 2849
              }
            },
            {
              "key": "VIVO",
              "doc_count": 1,
              "price_aggs": {
                "value": 2799
              }
            }
          ]
        }
      }
    }

    可以看到每个桶中都有自己的 price_aggs 字段,这是度量聚合的结果

  • 相关阅读:
    单据存储过程
    C语言II博客作业04
    C语言II博客作业03
    C语言II博客作业02
    C语言II博客作业01
    学期总结
    C语言I博客作业09
    C语言I博客作业08
    C语言I博客作业07
    C语言I博客作业06
  • 原文地址:https://www.cnblogs.com/heqiuyong/p/10353472.html
Copyright © 2020-2023  润新知