• 莫烦pytorch学习笔记(八)——卷积神经网络(手写数字识别实现)


    莫烦视频网址

    这个代码实现了预测和可视化

      1 import os
      2 
      3 # third-party library
      4 import torch
      5 import torch.nn as nn
      6 import torch.utils.data as Data
      7 import torchvision
      8 import matplotlib.pyplot as plt
      9 
     10 # torch.manual_seed(1)    # reproducible
     11 
     12 # Hyper Parameters
     13 EPOCH = 1               # train the training data n times, to save time, we just train 1 epoch
     14 BATCH_SIZE = 50
     15 LR = 0.001              # learning rate
     16 DOWNLOAD_MNIST = False
     17 
     18 
     19 # Mnist digits dataset
     20 if not(os.path.exists('./mnist/')) or not os.listdir('./mnist/'):
     21     # not mnist dir or mnist is empyt dir
     22     DOWNLOAD_MNIST = True
     23 
     24 train_data = torchvision.datasets.MNIST(
     25     root='./mnist/',
     26     train=True,                                     # this is training data
     27     transform=torchvision.transforms.ToTensor(),    # 把数据压缩到0到1之间的numpy数据
     28                                                     # torch.FloatTensor of shape (C x H x W) and normalize in the range [0.0, 1.0]
     29     download=DOWNLOAD_MNIST,
     30 )
     31 
     32 # plot one example
     33 print(train_data.train_data.size())                 # (60000, 28, 28)
     34 print(train_data.train_labels.size())               # (60000)
     35 plt.imshow(train_data.train_data[0].numpy(), cmap='gray')
     36 plt.title('%i' % train_data.train_labels[0])
     37 plt.show()
     38 
     39 # Data Loader for easy mini-batch return in training, the image batch shape will be (50, 1, 28, 28)
     40 train_loader = Data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)
     41 
     42 # pick 2000 samples to speed up testing
     43 test_data = torchvision.datasets.MNIST(root='./mnist/', train=False)
     44 test_x = torch.unsqueeze(test_data.test_data, dim=1).type(torch.FloatTensor)[:2000]/255.   # shape from (2000, 28, 28) to (2000, 1, 28, 28), value in range(0,1)
     45 test_y = test_data.test_labels[:2000]
     46 
     47 
     48 class CNN(nn.Module):
     49     def __init__(self):
     50         super(CNN, self).__init__()
     51         self.conv1 = nn.Sequential(         # input shape (1, 28, 28)
     52             nn.Conv2d(
     53                 in_channels=1,              # input height
     54                 out_channels=16,            # n_filters
     55                 kernel_size=5,              # filter size
     56                 stride=1,                   # filter movement/step
     57                 padding=2,                  # if want same width and length of this image after Conv2d, padding=(kernel_size-1)/2 if stride=1
     58             ),                              # output shape (16, 28, 28)
     59             nn.ReLU(),                      # activation
     60             nn.MaxPool2d(kernel_size=2),    # choose max value in 2x2 area, output shape (16, 14, 14)
     61         )
     62         self.conv2 = nn.Sequential(         # input shape (16, 14, 14)
     63             nn.Conv2d(16, 32, 5, 1, 2),     # output shape (32, 14, 14)
     64             nn.ReLU(),                      # activation
     65             nn.MaxPool2d(2),                # output shape (32, 7, 7)
     66         )
     67         self.out = nn.Linear(32 * 7 * 7, 10)   # fully connected layer, output 10 classes
     68 
     69     def forward(self, x):
     70         x = self.conv1(x)
     71         x = self.conv2(x)
     72         x = x.view(x.size(0), -1)           # flatten the output of conv2 to (batch_size, 32 * 7 * 7)
     73         output = self.out(x)
     74         return output, x    # return x for visualization
     75 
     76 
     77 cnn = CNN()
     78 print(cnn)  # net architecture
     79 
     80 optimizer = torch.optim.Adam(cnn.parameters(), lr=LR)   # optimize all cnn parameters
     81 loss_func = nn.CrossEntropyLoss()                       # the target label is not one-hotted
     82 
     83 # following function (plot_with_labels) is for visualization, can be ignored if not interested
     84 from matplotlib import cm
     85 try: from sklearn.manifold import TSNE; HAS_SK = True
     86 except: HAS_SK = False; print('Please install sklearn for layer visualization')
     87 def plot_with_labels(lowDWeights, labels):
     88     plt.cla()
     89     X, Y = lowDWeights[:, 0], lowDWeights[:, 1]
     90     for x, y, s in zip(X, Y, labels):
     91         c = cm.rainbow(int(255 * s / 9)); plt.text(x, y, s, backgroundcolor=c, fontsize=9)
     92     plt.xlim(X.min(), X.max()); plt.ylim(Y.min(), Y.max()); plt.title('Visualize last layer'); plt.show(); plt.pause(0.01)
     93 
     94 plt.ion()
     95 # training and testing
     96 for epoch in range(EPOCH):
     97     for step, (b_x, b_y) in enumerate(train_loader):   # gives batch data, normalize x when iterate train_loader
     98 
     99         output = cnn(b_x)[0]               # cnn output
    100         loss = loss_func(output, b_y)   # cross entropy loss
    101         optimizer.zero_grad()           # clear gradients for this training step
    102         loss.backward()                 # backpropagation, compute gradients
    103         optimizer.step()                # apply gradients
    104 
    105         if step % 50 == 0:
    106             test_output, last_layer = cnn(test_x)
    107             pred_y = torch.max(test_output, 1)[1].data.numpy()
    108             accuracy = float((pred_y == test_y.data.numpy()).astype(int).sum()) / float(test_y.size(0))
    109             print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.numpy(), '| test accuracy: %.2f' % accuracy)
    110             if HAS_SK:
    111                 # Visualization of trained flatten layer (T-SNE)
    112                 tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000)
    113                 plot_only = 500
    114                 low_dim_embs = tsne.fit_transform(last_layer.data.numpy()[:plot_only, :])
    115                 labels = test_y.numpy()[:plot_only]
    116                 plot_with_labels(low_dim_embs, labels)
    117 plt.ioff()
    118 
    119 # print 10 predictions from test data
    120 test_output, _ = cnn(test_x[:10])
    121 pred_y = torch.max(test_output, 1)[1].data.numpy()
    122 print(pred_y, 'prediction number')
    123 print(test_y[:10].numpy(), 'real number')

     去掉可视化进行代码简化

     1 import os
     2 # third-party library
     3 import torch
     4 import torch.nn as nn
     5 import torch.utils.data as Data
     6 import torchvision
     7 import matplotlib.pyplot as plt
     8 
     9 EPOCH = 1               # train the training data n times, to save time, we just train 1 epoch
    10 BATCH_SIZE = 50
    11 LR = 0.001              # learning rate
    12 
    13 train_data = torchvision.datasets.MNIST(
    14     root='./mnist/',                                #下载后的存放目录
    15     train=True,                                     # this is training data
    16     transform=torchvision.transforms.ToTensor(),    # 把数据压缩到0到1之间的numpy数据,如果原始数据是rgb数据(0-255)则变为黑白数据,并使numpy数据变为tensor数据                                                 # torch.FloatTensor of shape (C x H x W) and normalize in the range [0.0, 1.0]
    17     download=True#不存在该数据就设置为True进行下载,存在则改为False
    18 )
    19 
    20 # plot one example
    21 print(train_data.train_data.size())                 # (60000, 28, 28),六万图片
    22 print(train_data.train_labels.size())               # (60000),六万标签
    23 plt.imshow(train_data.train_data[0].numpy(), cmap='gray')#展现第一个训练数据图片
    24 plt.title('%i' % train_data.train_labels[0])
    25 plt.show()
    26 
    27 # Data Loader for easy mini-batch return in training, the image batch shape will be (50, 1, 28, 28)
    28 train_loader = Data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)
    29 
    30 # pick 2000 samples to speed up testing
    31 test_data = torchvision.datasets.MNIST(root='./mnist/', train=False)
    32 test_x = torch.unsqueeze(test_data.test_data, dim=1).type(torch.FloatTensor)[:2000]/255.   # shape from (2000, 28, 28) to (2000, 1, 28, 28), value in range(0,1)
    33 test_y = test_data.test_labels[:2000]
    34 
    35 class CNN(nn.Module):
    36     def __init__(self):
    37         super(CNN, self).__init__()
    38         self.conv1 = nn.Sequential(         # input shape (1, 28, 28),考虑batch是(batch,1,28,2839             nn.Conv2d(
    40                 in_channels=1,              # input height
    41                 out_channels=16,            # n_filters
    42                 kernel_size=5,              # filter size
    43                 stride=1,                   # filter movement/step
    44                 padding=2,                  # if want same width and length of this image after Conv2d, padding=(kernel_size-1)/2 if stride=1
    45             ),                              # output shape (16, 28, 28)
    46             nn.ReLU(),                      # activation
    47             nn.MaxPool2d(kernel_size=2),    # choose max value in 2x2 area, output shape (16, 14, 14)
    48         )
    49         self.conv2 = nn.Sequential(         # input shape (16, 14, 14)
    50             nn.Conv2d(16, 32, 5, 1, 2),     # output shape (32, 14, 14)
    51             nn.ReLU(),                      # activation
    52             nn.MaxPool2d(2),                # output shape (32, 7, 7)
    53         )
    54         self.out = nn.Linear(32 * 7 * 7, 10)   # fully connected layer, output 10 classes
    55 
    56     def forward(self, x):
    57         x = self.conv1(x)
    58         x = self.conv2(x)
    59         x = x.view(x.size(0), -1)           # flatten the output of conv2 to (batch_size, 32 * 7 * 7),只有tensor对象才可以使用x.size(0)
    60         output = self.out(x)
    61         return output, x    # return x for visualization
    62 
    63 
    64 cnn = CNN()
    65 #print(cnn)  # net architecture
    66 
    67 optimizer = torch.optim.Adam(cnn.parameters(), lr=LR)   # optimize all cnn parameters
    68 loss_func = nn.CrossEntropyLoss()                       # the target label is not one-hotted
    69 
    70 # training and testing
    71 for epoch in range(EPOCH):
    72     for step, (b_x, b_y) in enumerate(train_loader):   # gives batch data, normalize x when iterate train_loader
    73 
    74         output = cnn(b_x)[0]            # cnn output
    75         loss = loss_func(output, b_y)   # cross entropy loss
    76         optimizer.zero_grad()           # clear gradients for this training step
    77         loss.backward()                 # backpropagation, compute gradients
    78         optimizer.step()                # apply gradients
    79 
    80         if step % 50 == 0:
    81             test_output = cnn(test_x)[0]
    82             print("----------------")
    83             #print(test_output.shape)   #2000*10
    84             #print(torch.max(test_output, 1))     #返回的每一行中最大值和其下标
    85             pred_y = torch.max(test_output, 1)[1].data.numpy() #返回的是每个样本对应0-9数字可能性最大的概率对应的下标
    86             accuracy = float((pred_y == test_y.data.numpy()).astype(int).sum()) / float(test_y.size(0))
    87             print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.numpy(), '| test accuracy: %.2f' % accuracy)
    88 
    89 # print 10 predictions from test data
    90 test_output, _ = cnn(test_x[:10])
    91 pred_y = torch.max(test_output, 1)[1].data.numpy()
    92 print(pred_y, 'prediction number')
    93 print(test_y[:10].numpy(), 'real number')
  • 相关阅读:
    双色球的概率和收益
    伽玛函数
    概率统计13——二项分布与多项分布
    贝叶斯决策理论(1)
    线性代数笔记34——左右逆和伪逆
    线性代数笔记33——基变换和图像压缩
    线性代数笔记32——线性变换及对应矩阵
    线性代数笔记31——奇异值分解
    线性代数笔记30——相似矩阵和诺尔当型
    线性代数笔记29——正定矩阵和最小值
  • 原文地址:https://www.cnblogs.com/henuliulei/p/11400012.html
Copyright © 2020-2023  润新知