• clickhouse


    hive-to-clickhouse

    hive->logstash->kafka->clickhouse
    logstash.conf
    
    input {
        jdbc {
            jdbc_driver_library => "jars/hive-jdbc-2.1.1.jar,jars/libthrift-0.9.3.jar,jars/httpclient-4.4.jar,jars/httpcore-4.4.jar,jars/hive-service-2.1.1.jar,jars/hive-common-2.1.1.jar,jars/hive-metastore-2.1.1.jar,jars/hadoop-common-2.8.3.jar,jars/commons-logging-1.2.jar,jars/log4j-slf4j-impl-2.4.1.jar,jars/hive-service-rpc-2.1.1.jar,jars/commons-lang-2.6.jar,jars/commons-lang3-3.1.jar,jars/protobuf-java-2.5.0.jar,jars/hive-serde-2.1.1.jar"
            jdbc_driver_class => "org.apache.hive.jdbc.HiveDriver"
            jdbc_connection_string => "jdbc:hive2://127.0.0.1:10000/default"
            jdbc_user => ""
            jdbc_password => ""
            parameters => {"n" => 100}
    		use_column_value => true
    		tracking_column_type => "numeric"
    		tracking_column => "ts"
            statement => "select ts,tag,cnt,val from test3 where ts > :sql_last_value"
            schedule => "* * * * *"
        }
    }
    
    filter {
        mutate {
            remove_field => ["@version","@timestamp"]
        }
    }
    
    output {
    	kafka {
    		bootstrap_servers => "localhost:9092" 
    		topic_id => "events"
    		batch_size => 5
    		codec => "json"
    	}
    }
    
    clickhouse-sql
    CREATE TABLE event_stream (ts UInt64, tag String, cnt Int64, val Double) ENGINE = Kafka('192.168.182.1:9092', 'events', 'group1', 'JSONEachRow'); --消费kafka
    CREATE MATERIALIZED VIEW events ENGINE = MergeTree(day, (day,ts, tag, cnt, val), 8192) AS SELECT toDate(toDateTime(ts)) AS day, ts, tag, cnt, val FROM event_stream; --数据持久化
    CREATE TABLE events_all AS events ENGINE = Distributed(perftest_3shards_1replicas, default, events, rand());
    
  • 相关阅读:
    【POJ
    【POJ
    【POJ
    【POJ
    【POJ
    【POJ
    【POJ
    【POJ
    NAT
    OSPF与ACL综合实验
  • 原文地址:https://www.cnblogs.com/hellowzd/p/13891561.html
Copyright © 2020-2023  润新知