• 源码分析 HashMap 1.8


    1.0 数据结构

      

    2.0 存储流程

      

    3.0 数组元素 & 链表节点的实现类

       HashMap中的数组元素 & 链表节点 采用 Node类 实现,与jdk1.7相比只是把Entry换了个名字 

       HashMap中的红黑树节点 采用 TreeNode 类 实现

       

     /**
      * 红黑树节点 实现类:继承自LinkedHashMap.Entry<K,V>类
      */
      static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {  
    
          // 属性 = 父节点、左子树、右子树、删除辅助节点 + 颜色
        TreeNode<K,V> parent;  
        TreeNode<K,V> left;   
        TreeNode<K,V> right;
        TreeNode<K,V> prev;   
        boolean red;   
    
        // 构造函数
        TreeNode(int hash, K key, V val, Node<K,V> next) {  
            super(hash, key, val, next);  
        }  
      
        // 返回当前节点的根节点  
        final TreeNode<K,V> root() {  
            for (TreeNode<K,V> r = this, p;;) {  
                if ((p = r.parent) == null)  
                    return r;  
                r = p;  
            }  
        } 

    4.0 源码分析

      4.1 hash扰动函数的变更

      

      4.2put函数变更

      

     /**
         * 分析2:putVal(hash(key), key, value, false, true)
         */
         final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
    
                Node<K,V>[] tab; Node<K,V> p; int n, i;
    
            // 1. 若哈希表的数组tab为空,则 通过resize() 创建
            // 所以,初始化哈希表的时机 = 第1次调用put函数时,即调用resize() 初始化创建
            // 关于resize()的源码分析将在下面讲解扩容时详细分析,此处先跳过
               if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
    
            // 2. 计算插入存储的数组索引i:根据键值key计算的hash值 得到
            // 此处的数组下标计算方式 = i = (n - 1) & hash,同JDK 1.7中的indexFor(),上面已详细描述
    
            // 3. 插入时,需判断是否存在Hash冲突:
            // 若不存在(即当前table[i] == null),则直接在该数组位置新建节点,插入完毕
            // 否则,代表存在Hash冲突,即当前存储位置已存在节点,则依次往下判断:a. 当前位置的key是否与需插入的key相同、b. 判断需插入的数据结构是否为红黑树 or 链表
            if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);  // newNode(hash, key, value, null)的源码 = new Node<>(hash, key, value, next)
    
        else {
            Node<K,V> e; K k;
    
            // a. 判断 table[i]的元素的key是否与 需插入的key一样,若相同则 直接用新value 覆盖 旧value
            // 判断原则:equals()
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
    
            // b. 继续判断:需插入的数据结构是否为红黑树 or 链表
            // 若是红黑树,则直接在树中插入 or 更新键值对
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); ->>分析3
    
            // 若是链表,则在链表中插入 or 更新键值对
            // i.  遍历table[i],判断Key是否已存在:采用equals() 对比当前遍历节点的key 与 需插入数据的key:若已存在,则直接用新value 覆盖 旧value
            // ii. 遍历完毕后仍无发现上述情况,则直接在链表尾部插入数据
            // 注:新增节点后,需判断链表长度是否>8(8 = 桶的树化阈值):若是,则把链表转换为红黑树
            
            else {
                for (int binCount = 0; ; ++binCount) {
                    // 对于ii:若数组的下1个位置,表示已到表尾也没有找到key值相同节点,则新建节点 = 插入节点
                    // 注:此处是从链表尾插入,与JDK 1.7不同(从链表头插入,即永远都是添加到数组的位置,原来数组位置的数据则往后移)
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
    
                        // 插入节点后,若链表节点>数阈值,则将链表转换为红黑树
                        if (binCount >= TREEIFY_THRESHOLD - 1) 
                            treeifyBin(tab, hash); // 树化操作
                        break;
                    }
    
                    // 对于i
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
    
                    // 更新p指向下一个节点,继续遍历
                    p = e;
                }
            }
    
            // 对i情况的后续操作:发现key已存在,直接用新value 覆盖 旧value & 返回旧value
            if (e != null) { 
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e); // 替换旧值时会调用的方法(默认实现为空)
                return oldValue;
            }
        }
    
        ++modCount;
    
        // 插入成功后,判断实际存在的键值对数量size > 最大容量threshold
        // 若 > ,则进行扩容 ->>分析4(但单独讲解,请直接跳出该代码块)
        if (++size > threshold)
            resize();
    
        afterNodeInsertion(evict);// 插入成功时会调用的方法(默认实现为空)
        return null;
    
    }
    
        /**
         * 分析3:putTreeVal(this, tab, hash, key, value)
         * 作用:向红黑树插入 or 更新数据(键值对)
         * 过程:遍历红黑树判断该节点的key是否与需插入的key 相同:
         *      a. 若相同,则新value覆盖旧value
         *      b. 若不相同,则插入
         */
    
         final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab,
                                           int h, K k, V v) {
                Class<?> kc = null;
                boolean searched = false;
                TreeNode<K,V> root = (parent != null) ? root() : this;
                for (TreeNode<K,V> p = root;;) {
                    int dir, ph; K pk;
                    if ((ph = p.hash) > h)
                        dir = -1;
                    else if (ph < h)
                        dir = 1;
                    else if ((pk = p.key) == k || (k != null && k.equals(pk)))
                        return p;
                    else if ((kc == null &&
                              (kc = comparableClassFor(k)) == null) ||
                             (dir = compareComparables(kc, k, pk)) == 0) {
                        if (!searched) {
                            TreeNode<K,V> q, ch;
                            searched = true;
                            if (((ch = p.left) != null &&
                                 (q = ch.find(h, k, kc)) != null) ||
                                ((ch = p.right) != null &&
                                 (q = ch.find(h, k, kc)) != null))
                                return q;
                        }
                        dir = tieBreakOrder(k, pk);
                    }
    
                    TreeNode<K,V> xp = p;
                    if ((p = (dir <= 0) ? p.left : p.right) == null) {
                        Node<K,V> xpn = xp.next;
                        TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn);
                        if (dir <= 0)
                            xp.left = x;
                        else
                            xp.right = x;
                        xp.next = x;
                        x.parent = x.prev = xp;
                        if (xpn != null)
                            ((TreeNode<K,V>)xpn).prev = x;
                        moveRootToFront(tab, balanceInsertion(root, x));
                        return null;
                    }
                }
            }

    总结 put方法流程

    • 判断当前桶是否为空,空的就需要初始化(resize 中会判断是否进行初始化)。
    • 根据当前 key 的 hashcode 定位到具体的桶中并判断是否为空,为空表明没有 hash 冲突直接在当前位置创建一个新桶。
    • 如果当前桶有值( hash 冲突),比较当前桶中的 key 和 key 的 hashcode 与写入的 key 是否相等,相等赋值给 e,在第 8 步的时候统一进行赋值及返回。
    • 如果当前桶为红黑树,就按照红黑树的方式写入数据。
    • 如果是链表,将当前的 key、value 封装成一个 新结点写入到当前桶的后面(形成链表)。
    • 判断当前链表的大小是否大于预设的阈值(TREEIFY_THRESHOLD),大于时转换为红黑树。
    • 如果在遍历过程中找到 key 相同时直接退出遍历。
    • 如果 e != null 说明存在相同的 key,将值覆盖。
    • 判断是否需要进行扩容
  • 相关阅读:
    数组作为方法参数
    定义一个方法,根据商品总价,计算出对应的折扣并输出。折扣信息如下
    Cocos2d入门--1--初涉相关属性或代码
    JSP基础--JAVA遇见HTML
    查找算法--折半查找
    排序算法--冒泡排序
    排序算法--简单选择排序
    C语言的传值与传址调用
    学习C语言的数组
    如何获取QQ里的截图app?
  • 原文地址:https://www.cnblogs.com/helloworldmybokeyuan/p/11713509.html
Copyright © 2020-2023  润新知