要使用pandas,你首先就得熟悉它的两个主要数据结构:Series和DataFrame。
1.Series
Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一组与之相关的数据标签(即索引)组成
In [11]: obj = pd.Series([4, 7, -5, 3]) In [12]: obj Out[12]: 0 4 1 7 2 -5 3 3 dtype: int64
In [15]: obj2 = pd.Series([4, 7, -5, 3], index=['d', 'b', 'a', 'c']) In [16]: obj2 Out[16]: d 4 b 7 a -5 c 3 dtype: int64 In [17]: obj2.index Out[17]: Index(['d', 'b', 'a', 'c'], dtype='object')
2.DataFrame
DataFrame是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔值等)。DataFrame既有行索引也有列索引,它可以被看做由Series组成的字典(共用同一个索引)。DataFrame中的数据是以一个或多个二维块存放的(而不是列表、字典或别的一维数据结构)。
data = {'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada', 'Nevada'], 'year': [2000, 2001, 2002, 2001, 2002, 2003], 'pop': [1.5, 1.7, 3.6, 2.4, 2.9, 3.2]} frame = pd.DataFrame(data) In [45]: frame Out[45]: pop state year 0 1.5 Ohio 2000 1 1.7 Ohio 2001 2 3.6 Ohio 2002 3 2.4 Nevada 2001 4 2.9 Nevada 2002 5 3.2 Nevada 2003
如果指定了列序列,则DataFrame的列就会按照指定顺序进行排列.
In [47]: pd.DataFrame(data, columns=['year', 'state', 'pop']) Out[47]: year state pop 0 2000 Ohio 1.5 1 2001 Ohio 1.7 2 2002 Ohio 3.6 3 2001 Nevada 2.4 4 2002 Nevada 2.9 5 2003 Nevada 3.2
如果嵌套字典传给DataFrame,pandas就会被解释为:外层字典的键作为列,内层键则作为行索引
In [66]: frame3 = pd.DataFrame(pop) In [67]: frame3 Out[67]: Nevada Ohio 2000 NaN 1.5 2001 2.4 1.7 2002 2.9 3.6
索引对象
pandas的索引对象负责管理轴标签和其他元数据(比如轴名称等)。构建Series或DataFrame时,所用到的任何数组或其他序列的标签都会被转换成一个Index。
In [76]: obj = pd.Series(range(3), index=['a', 'b', 'c']) In [77]: index = obj.index In [78]: index Out[78]: Index(['a', 'b', 'c'], dtype='object') In [79]: index[1:] Out[79]: Index(['b', 'c'], dtype='object')