【题目】
输入二叉树中的两个结点,输出这两个结点在数中最低的共同父结点。
二叉树的结点定义如下:
1
2 3 4 5 6 |
struct BinaryTreeNode
{ int value; BinaryTreeNode *left; BinaryTreeNode *right; }; |
【分析】
求数中两个结点的最低共同结点是面试中经常出现的一个问题。这个问题有几个变种。
【变种1】
第一个变种是二叉树是一种特殊的二叉树:查找二叉树。也就是树是排序过的,位于左子树上的结点都比父结点小,而位于右子树的结点都比父结点大。我们只需要从根结点开始和两个结点进行比较。如果当前结点的值比两个结点都大,则最低的共同父结点一定在当前结点的左子树中。如果当前结点的值比两个结点都小,则最低的共同父结点一定在当前结点的右子树中。
具体代码如下:
1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
// 48_GetLowestCommonAncessor.cpp : Defines the entry point for the console application.
// #include "stdafx.h" struct BinaryTreeNode { int value; BinaryTreeNode *left; BinaryTreeNode *right; }; BinaryTreeNode* create_tree_r(int a[],int left,int right) { // base case for leaf-node if (left>right) return NULL; int mid = (left+right)/2; BinaryTreeNode *root = new BinaryTreeNode(); root->value = a[mid]; if(left<=mid) root->left = create_tree_r(a,left,mid-1); if (right>=mid) root->right = create_tree_r(a,mid+1,right); return root; } BinaryTreeNode* CreateTree(int a[],int length) { if(NULL==a||length<=0) return NULL; return create_tree_r(a,0,length-1); } // whether tree root has node x? bool HasNode(BinaryTreeNode *root,int x) { if(NULL==root) return false; if (root->value==x) { return true; } else if (root->value<x) { return HasNode(root->right,x); } else { return HasNode(root->left,x); } } // check whether root tree has node bool HasNode(BinaryTreeNode *root,BinaryTreeNode *node) { if (root==node) return true; bool bLeft = false; bool bRight = false; // check in left sub-tree if (root->left!=NULL) bLeft = HasNode(root->left,node); // check in left right-tree if (root->right!=NULL) bRight = HasNode(root->right,node); return bLeft||bRight; } // get lowest common ancestor recursively BinaryTreeNode* GetLowestCommonAncestor_Recursively(BinaryTreeNode *root,int x,int y) { if(NULL==root) return NULL; if(root->value>=x && root->value<=y) {// x in left and y in right sub-tree return root; } else if (root->value<x) {// x y in right sub-tree return GetLowestCommonAncestor_Recursively(root->right,x,y); } else //else if(root->value>y) {// x y in left sub-tree return GetLowestCommonAncestor_Recursively(root->left,x,y); } } // get lowest common ancestor iteratively BinaryTreeNode* GetLowestCommonAncestor_Iteratively(BinaryTreeNode *root,int x, int y) { if(NULL==root) return NULL; BinaryTreeNode *cur = root; while(cur!=NULL) { if(cur->value>=x && cur->value<=y) {// x in left and y in right sub-tree return cur; } else if (cur->value<x) {// x y in right sub-tree cur = cur->right; } else {// x y in left sub-tree cur = cur->left; } } return cur; } // get lca for x and y BinaryTreeNode* GetLCA_Solution(BinaryTreeNode *root,int x,int y) { // check whether root has x and y if (HasNode(root,x)&&HasNode(root,y)) return GetLowestCommonAncestor_Iteratively(root,x,y); else return NULL; } void test_base(BinaryTreeNode *root,int x,int y) { BinaryTreeNode *result = GetLCA_Solution(root,x,y); if (NULL==result) { printf("%s ","can not find lca."); } else { printf("%d,%d--->%d ",x,y,result->value); } } void test_case() { /* 5 / / / 2 7 / / / | | 1 3 6 8 4 9 */ int a[] = {1,2,3,4,5,6,7,8,9}; int length = sizeof(a)/sizeof(int); BinaryTreeNode *root = CreateTree(a,length); test_base(root,4,9); // 5 test_base(root,1,4); // 2 test_base(root,6,9); // 7 // special case test_base(root,-1,4); // cannot find lca test_base(root,6,100);// cannot find lca } int _tmain(int argc, _TCHAR* argv[]) { test_case(); return 0; } /* 4,9--->5 1,4--->2 6,9--->7 can not find lca. can not find lca. */ |
【变种2】
第二个变种是树为多叉树,每个结点都有一个指针指向它的父结点。于是我们可以从任何一个结点出发,得到一个到达树根结点的单向链表。因此这个问题转换为两个单向链表的第一个公共结点,之前35.两链表的第一个公共结点已经讨论过。
【变种3】
第三个变种是树为多叉树,每个父节点有若干个子节点,但是子节点没有指向父节点指针。我们只能从根节点遍历树,从而得到从根节点到某一节点的路径,然后求这两个路径的最后一个公共节点。
本题中的二叉树是第三个变种的一个特例,即每个父节点只有左右子节点。
具体代码如下:
1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
#include <vector>
#include <iostream> using namespace std; // treenode struct TreeNode { int value; vector<TreeNode*> vChildren; }; // get tree node path from root to node bool GetNodePath(TreeNode *root,TreeNode *node,vector<TreeNode*> &path) { if(root==node) return true; path.push_back(root); // find node in root's children bool found = false; vector<TreeNode*>::iterator iter = root->vChildren.begin(); while(!found&&iter<root->vChildren.end()) { found = GetNodePath(*iter,node,path); iter++; } // if not found in root's children,then remove it from path if (!found) path.pop_back(); return found; } // get last common node of path1 and path2 TreeNode* GetLastCommonNode(const vector<TreeNode*> &path1,const vector<TreeNode*> &path2) {// A-B-D, A-B-E vector<TreeNode*>::const_iterator iter1= path1.begin(); vector<TreeNode*>::const_iterator iter2= path2.begin(); TreeNode *lastNode = NULL; while(iter1!=path1.end()&&iter2!=path2.end()) { if (*iter1==*iter2) lastNode = *iter1; iter1++; iter2++; } return lastNode; } // get lowest common ancestor TreeNode* GetLCA(TreeNode* root,TreeNode *node1,TreeNode *node2) {// O(n)+O(n)+O(n) = O(n) if(NULL==root||NULL==node1||node2==NULL) return NULL; vector<TreeNode*> path1; GetNodePath(root,node1,path1); vector<TreeNode*> path2; GetNodePath(root,node2,path2); return GetLastCommonNode(path1,path2); } |
【参考】
http://zhedahht.blog.163.com/blog/static/25411174201081263815813/
http://blog.csdn.net/dahai_881222/article/details/7801356
http://www.cnblogs.com/venow/archive/2012/08/31/2664969.html
【本文链接】
http://www.cnblogs.com/hellogiser/p/get-lowest-common-ancestor-of-binary-tree.html