• 二叉树 C++


    代码参考:

    http://blog.csdn.net/iqrocket/article/details/8266365

    http://blog.csdn.net/luno1/article/details/7951993

    二叉树的性质:

    1、在二叉树的第 i 层上,至多有 2 i-1  个节点。(i >= 1)
    2、深度为 k 的二叉树至多有 2k -1 个节点 (k >= 1)
    3、对任何一棵二叉树 T,如果其终端节点数为 n0, 度为2 的节点数为 n2, 则 n0 = n2 +1
    证明: 分支线总数是 W, 节点总数是 N, 度为1的节点是 n1。  W = N -1
          W = N -1 = n1 + 2*n2
          N = n0 + n1 + n2
          => n0 = n2 + 1

    4、具有 N 个结点的完全二叉树的深度为【log N】 + 1. (【X】表示不大于X 的最大整数,底是2)

    证明:    2k-1 -1 < N <= 2k -1
                  2k-1 <= N < 2k
                  对两边取对数
                  k -1 <= log N < k             k = 【log N】 + 1

    5、如果对一棵有 N 个结点的完全二叉树(其深度为【log n】+ 1)的结点按层序编号(从第一层到第【log n】+ 1 层,每层从左到右),对任一结点 i (1<= i<=n)有:
    a: 如果 i = 1, 则结点 i 是二叉树的根,无双亲;如果 i>1,则其双亲是结点【i/2】
    b: 如果2i > n, 则结点 i 无左孩子(结点 i 为叶子结点);否则其左孩子是结点 2i;
    c: 如果2i+1 > n,则结点 i 无右孩子(结点 i 为叶子结点);否则其左孩子是结点 2i+1;

    二叉树类的声明:包括树的建立、递归遍历、非递归遍历、结点总数、叶子节点数、树的高度

    #include<iostream>
    #include<stack>
    #include<queue>
    using namespace std;
    template<class T>
    struct TreeNode
    {
        T element;
        TreeNode* rightNode, *leftNode;
    };
    
    template<class T>
    class BinaryTree
    {
    public:
        BinaryTree();
        ~BinaryTree();
        TreeNode<T>*GetRoot();
        //递归遍历
        void PreOrder(TreeNode<T>*);
        void Inorder(TreeNode<T>*);
        void PostOrder(TreeNode<T>*);
        //非递归遍历
        void NonPreOrder(TreeNode<T>*);
        void NonInOrder(TreeNode<T>*);
        void NonPostOrder(TreeNode<T>*);
        void LevelOrder(TreeNode<T>*);    //层序遍历
    
        int BTreeSize(TreeNode<T>*);       //计算树的节点总数
        int BTreeLeaves(TreeNode<T>*);     //计算树的叶子数
         int BTreeHight(TreeNode<T>*);      //计算树的高度
    
    private:
        TreeNode<T>* root;
        TreeNode<T>*Create();
        void Release(TreeNode<T>*root);
    };

    二叉树中函数的实现:

    //获取根结点
    template<class T>
    TreeNode<T>* BinaryTree<T>::GetRoot()
    {
        return root;
    }
    //构造函数
    template<class T>
    BinaryTree<T>::BinaryTree()
    {
        root = new TreeNode<T>;
        root = Create();
    }
    //析构函数
    template<class T>
    BinaryTree<T>::~BinaryTree()
    {
        Release(root);
        delete root;
    }
    //生成树,采用先序遍历的方式生成树
    template<class T>
    TreeNode<T>* BinaryTree<T>::Create()
    {
        char elem;
        cin >> elem;
        TreeNode<T>* node;
        if (elem == '#')
            node = NULL;
        else
        {
            node = new TreeNode<T>;
            node->element = elem;
            node->leftNode = Create();
            node->rightNode = Create();
        }
        return node;
    }
    //删除结点
    template<class T>
    void BinaryTree<T>::Release(TreeNode<T>*root)
    {
        if (root != NULL)
        {
            Release(root->leftNode);
            Release(root->rightNode);
        }
    }
    //前序遍历
    template<class T>
    void BinaryTree<T>::PreOrder(TreeNode<T>*node)
    {
        if (node == NULL)
            return;
        else
        {
            cout << node->element<<"  ";
            PreOrder(node->leftNode);
            PreOrder(node->rightNode);
        }
    }
    //中序遍历
    template<class T>
    void BinaryTree<T>::Inorder(TreeNode<T>*node)
    {
        if (node == NULL)
            return;
        else
        {
            Inorder(node->leftNode);
            cout << node->element << "  ";
            Inorder(node->rightNode);
        }
    }
    //后序遍历
    template<class T>
    void BinaryTree<T>::PostOrder(TreeNode<T>*node)
    {
        if (node == NULL)
            return;
        else
        {
            PostOrder(node->leftNode);
            PostOrder(node->rightNode);
            cout << node->element<<"  ";
        }
    }
    
    template<class T>
    void BinaryTree<T>::NonPreOrder(TreeNode<T>*node)
    {
        //前序遍历的顺序是:根左右
        stack<TreeNode<T>*>s;
        TreeNode<T>*pNode = node;
        while (pNode != NULL || !s.empty())
        {
            while (pNode != NULL)   //当pNode非空时, 1、打印根节点,并把根结点压入栈    2、将左叶子节点复制给 pNode,
            {
                cout << pNode->element << "  ";
                s.push(pNode);
                pNode = pNode->leftNode;
            }
            if (!s.empty())        //当栈非空时,将栈顶元素的右叶子复制给 pNode
            {
                pNode = s.top();
                s.pop();
                pNode = pNode->rightNode;
            }
        }
    }
    
    //非递归中序遍历
    template<class T>
    void BinaryTree<T>::NonInOrder(TreeNode<T>*node)     
    {
        stack<TreeNode<T>*>s;
        TreeNode<T>*pNode = node;
        while ( pNode != NULL || !s.empty())
        {
            while (pNode != NULL)
            {
                s.push(pNode);
                pNode = pNode->leftNode;
            }
            if (!s.empty())
            {
                pNode = s.top();
                cout << pNode->element << "  ";
                s.pop();
                pNode = pNode->rightNode;
            }
        }
    }
    
    //非递归后序遍历
    template<class T>
    void BinaryTree<T>::NonPostOrder(TreeNode<T>*node)
    {
        //遍历顺序:左右跟
        /*
             对任一结点,先将其入栈,访问该结点的左节点和右节点。若左右结点均访问过,则访问该节点
        */
        if (node == NULL)
            return;
        stack<TreeNode<T>*>s;
        queue<TreeNode<T>*>q;
        s.push(node);                 //将根结点压入栈
        TreeNode<T>*pre = NULL;
        TreeNode<T>* cur;
        while (!s.empty())
        {
            cur = s.top();
            //上一次访问的是当前节点的左子树
            if (cur->leftNode == NULL&&cur->rightNode == NULL || (pre != NULL) && (pre == cur->leftNode || pre == cur->rightNode))
            {
                cout << cur->element << "  ";
                s.pop();
                pre = cur;
            }
            else
            {
                if (cur->rightNode)
                    s.push(cur->rightNode);
                if (cur->leftNode)
                    s.push(cur->leftNode);
            }
        }
    
    }
    
    //层序遍历
    template<class T>
    void BinaryTree<T>::LevelOrder(TreeNode<T>*node)   //层序遍历
    {
        TreeNode<T>*pNode = node;
        if (pNode == NULL)
            return;
        //将每次层的叶子节点进入队列
        queue<TreeNode<T>*>q;
        q.push(pNode);
        while (!q.empty())
        {
            pNode = q.front();
            cout << pNode->element << "  ";
            q.pop();
            if (pNode->leftNode)
                q.push(pNode->leftNode);
            if (pNode->rightNode)
                q.push(pNode->rightNode);
        }
    }
    
    
    //求二叉树结点个数的函数  
    template<class T>
    int BinaryTree<T>::BTreeSize(TreeNode<T>* node)
    {
        //二叉树的结点个数为左右子树的高度之和再+1  
        if (node == NULL)
            return 0;
        else
            return 1 + BTreeSize(node->leftNode) + BTreeSize(node->rightNode);
    }
    
    
    //求二叉树叶子结点个数的函数  
    template<class T>
    int BinaryTree<T>::BTreeLeaves(TreeNode<T>* node)
    {
        //当为空时,返回0;当找到叶子时返回1  
        if (node == NULL) 
            return 0;
        else
           if (node->leftNode == 0 && node->rightNode == 0)
                return 1;
           else
               return BTreeLeaves(node->leftNode) + BTreeLeaves(node->rightNode);
    }
    
    //求二叉树高度的函数  
    template<class T>
    int BinaryTree<T>::BTreeHight(TreeNode<T>* node)
    {
        if (node == NULL) 
            return 0;
        else
        {
            //二叉树的高度为左右子树的最大者+1  
            int lHei = BTreeHight(node->leftNode);
            int rHei = BTreeHight(node->rightNode);
            return (lHei>rHei) ? lHei + 1 : rHei + 1;
        }
    }
    View Code

    测试代码:输入: A B # D # C # #。 树的形式为:

    #include<iostream>
    #include<string>
    #include"BinaryTree.cpp"
    using namespace std;
    
    int main()
    {
        cout << "请输入节点" << endl;   // A B # D # C # #
        BinaryTree<char>my_tree;
        
        my_tree.PreOrder(my_tree.GetRoot());
        cout << "递归先序遍历" << endl;
    
        my_tree.Inorder(my_tree.GetRoot());
        cout << "递归中序遍历" << endl;
        
        my_tree.PostOrder(my_tree.GetRoot());
        cout << "递归后序遍历" << endl;
    
        my_tree.LevelOrder(my_tree.GetRoot());
        cout << "层序遍历" << endl;
    
    
        my_tree.NonPreOrder(my_tree.GetRoot());
        cout << "非递归先序遍历" << endl;
    
        my_tree.NonInOrder(my_tree.GetRoot());
        cout << "非递归中序遍历" << endl;
    
        my_tree.NonPostOrder(my_tree.GetRoot());
        cout << "非递归后序遍历" << endl;
    
        cout << "二叉树的节点数是: " << my_tree.BTreeSize(my_tree.GetRoot()) << endl;
        cout << "二叉树的叶子数是: " << my_tree.BTreeLeaves(my_tree.GetRoot()) << endl;
        cout << "二叉树的高度是: " << my_tree.BTreeHight(my_tree.GetRoot()) << endl;
    
        cout << endl;
        cout << "hello world" << endl;
        system("pause");
        return 0;
    }
    View Code
  • 相关阅读:
    通过枚举enum实现单例设计
    hibernate框架学习第二天:核心API、工具类、事务、查询、方言、主键生成策略等
    hibernate框架学习第一天:hibernate介绍及基本操作
    struts2框架之重复提交问题
    struts2框架之标签
    struts2框架之文件下载(参考第三天学习笔记)
    struts2框架之文件上传(参考第三天学习笔记)
    struts2框架之OGNL(参考第三天学习笔记)
    struts2框架学习之第三天
    struts2框架之拦截器(参考第二天学习笔记)
  • 原文地址:https://www.cnblogs.com/hello-gogo/p/7234851.html
Copyright © 2020-2023  润新知