• [Kaggle] dogs-vs-cats之模型训练


    上一步建立好模型之后,现在就可以训练模型了。

    主要代码如下:

    import sys
    #将当期路径加入系统path中
    sys.path.append("E:\CODE\Anaconda\tensorflow\Kaggle\My-TensorFlow-tutorials-master\01 cats vs dogs\")
    
    import os
    import numpy as np
    import tensorflow as tf
    import input_data
    import model
    
    #%%
    
    N_CLASSES = 2 #类别数
    IMG_W = 208  # resize the image, if the input image is too large, training will be very slow.
    IMG_H = 208
    BATCH_SIZE = 16
    CAPACITY = 2000 #队列中元素个数
    MAX_STEP = 10000 #最大迭代次数 with current parameters, it is suggested to use MAX_STEP>10k
    learning_rate = 0.0001 # with current parameters, it is suggested to use learning rate<0.0001
    
    
    #%%
    def run_training():
        
        # you need to change the directories to yours.
        #train_dir = '/home/kevin/tensorflow/cats_vs_dogs/data/train/'#数据存放路径
        train_dir = 'E:\data\Dog_Cat\train\'
        #logs_train_dir = '/home/kevin/tensorflow/cats_vs_dogs/logs/train/'#存放训练参数,模型等
        logs_train_dir = "E:\CODE\Anaconda\tensorflow\Kaggle\My-TensorFlow-tutorials-master\01 cats vs dogs\"
        
        train, train_label = input_data.get_files(train_dir)
        
        train_batch, train_label_batch = input_data.get_batch(train,
                                                              train_label,
                                                              IMG_W,
                                                              IMG_H,
                                                              BATCH_SIZE, 
                                                              CAPACITY)      
        train_logits = model.inference(train_batch, BATCH_SIZE, N_CLASSES)#获得模型的输出
        train_loss = model.losses(train_logits, train_label_batch)#获取loss        
        train_op = model.trainning(train_loss, learning_rate)#训练模型
        train__acc = model.evaluation(train_logits, train_label_batch)#模型评估
           
        summary_op = tf.summary.merge_all()
        sess = tf.Session()
        train_writer = tf.summary.FileWriter(logs_train_dir, sess.graph)#把summary保存到路径中
        saver = tf.train.Saver()
        
        sess.run(tf.global_variables_initializer())
        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(sess=sess, coord=coord)
        
        try:
            for step in np.arange(MAX_STEP):
                if coord.should_stop():
                        break
                _, tra_loss, tra_acc = sess.run([train_op, train_loss, train__acc])
                   
                if step % 50 == 0:
                    print('Step %d, train loss = %.2f, train accuracy = %.2f%%' %(step, tra_loss, tra_acc*100.0))
                    summary_str = sess.run(summary_op)
                    train_writer.add_summary(summary_str, step)
                
                if step % 2000 == 0 or (step + 1) == MAX_STEP:
                    checkpoint_path = os.path.join(logs_train_dir, 'model.ckpt')
                    saver.save(sess, checkpoint_path, global_step=step)#保存模型及参数
                    
        except tf.errors.OutOfRangeError:
            print('Done training -- epoch limit reached')
        finally:
            coord.request_stop()
            
        coord.join(threads)
        sess.close()
        
    
    run_training()

    一些函数说明如下:

    1)tf.summary.merge_all

    作用:Merges all summaries collected in the default graph.

    2)tf.summary.FileWriter

    作用:Writes Summary protocol buffers to event files.

    3)tf.train.Saver

    作用:保存和恢复变量。

    举例:

    saver.save(sess, 'my-model', global_step=0)
    
    ==> filename: 'my-model-0'
    ...
    saver.save(sess, 'my-model', global_step=1000)
    
    ==> filename: 'my-model-1000' 

    4)add_summary

    作用:Writes Summary protocol buffers to event files.

    程序运行后,控制台输出如下:

    训练期间,也可以使用tensorboard查看模型训练情况。

    可以使用如下命令打开tensorboard。

    tensorboard --logdir=log文件路径

    log文件路径即为程序中设置的logs_train_dir。

    启动tensorboard之后,打开浏览器,输入对应网址,即可查看训练情况。

    整体解码如下图:

    loss与step的关系如下(两条曲线的原因是训练了两次,一次迭代了10000步,另一次迭代了15000步):

    也可以选择查看模型:

    说明:

    代码来自:https://github.com/kevin28520/My-TensorFlow-tutorials,略有修改

    函数作用主要参考tensorflow官网。https://www.tensorflow.org/versions/master/api_docs/

  • 相关阅读:
    css 讲浮动,haslayout,BFC的文章
    css 给inline和inline-block元素设置margin和padding
    css inline元素和inline-block元素之间缝隙产生原因和解决办法
    js 匿名函数立即执行问题
    css 解决图片下小空隙问题
    css BFC布局及用处
    css 单行/多行文字垂直居中问题
    js柯里化
    js 回调函数理解与应用
    js 四种调用模式和this的关系总结
  • 原文地址:https://www.cnblogs.com/hejunlin1992/p/7613347.html
Copyright © 2020-2023  润新知