• 维护后面的position + 离线 + 线段树 bzoj 3585


    3585: mex

    Time Limit: 20 Sec  Memory Limit: 128 MB
    Submit: 918  Solved: 481
    [Submit][Status][Discuss]

    Description

      有一个长度为n的数组{a1,a2,...,an}。m次询问,每次询问一个区间内最小没有出现过的自然数。

    Input

      第一行n,m。
      第二行为n个数。
      从第三行开始,每行一个询问l,r。

    Output

      一行一个数,表示每个询问的答案。

    Sample Input

    5 5
    2 1 0 2 1
    3 3
    2 3
    2 4
    1 2
    3 5

    Sample Output

    1
    2
    3
    0
    3

    HINT

    数据规模和约定

      对于100%的数据:

      1<=n,m<=200000

      0<=ai<=109

      1<=l<=r<=n


      对于30%的数据:


      1<=n,m<=1000

    Source

    http://www.lydsy.com/JudgeOnline/problem.php?id=3585

    思路:

    其实这题的思路和bzoj 3339完全就一样啊,连离散化都不需要。->我的bzoj3339:http://www.cnblogs.com/heimao5027/p/6668367.html

    因为对于n个数字,他的mex一定是<=n的,所以就算a[i]=1e9,那么我们就不要放到mex函数里面就好了,然后直接令next[i]=n+1即可,并不需要离散化

    于是就这么简单的修改一下3339的代码,一下子就又过了= =

    //看看会不会爆int!数组会不会少了一维!
    //取物问题一定要小心先手胜利的条件
    #include <bits/stdc++.h>
    using namespace std;
    #pragma comment(linker,"/STACK:102400000,102400000")
    #define LL long long
    #define ALL(a) a.begin(), a.end()
    #define pb push_back
    #define mk make_pair
    #define fi first
    #define se second
    #define haha printf("haha
    ")
    const int maxn = 200000 + 5;
    vector<pair<int, int> > ve[maxn];
    int tree[maxn << 2], lazy[maxn << 2];
    int n, q;
    int a[maxn], mex[maxn];
    bool vis[maxn];
    int nxt[maxn], pos[maxn];
    
    void build_tree(int l, int r, int o){
        lazy[o] = -1;
        if (l == r){
            tree[o] = mex[l]; return ;
        }
        int mid = (l + r) / 2;
        build_tree(l, mid, o << 1);
        build_tree(mid + 1, r, o << 1 | 1);
        tree[o] = min(tree[o << 1], tree[o << 1 | 1]);
    }
    
    void push_down(int o){
        int lb = o << 1, rb = o << 1 | 1;
        if (lazy[lb] == -1 || lazy[lb] > lazy[o]){
            lazy[lb] = lazy[o];
            tree[lb] = min(tree[lb], lazy[lb]);
        }
        if (lazy[rb] == -1 || lazy[rb] > lazy[o]){
            lazy[rb] = lazy[o];
            tree[rb] = min(tree[rb], lazy[rb]);
        }
        tree[o] = -1;
    }
    
    int query(int x, int l, int r, int o){
        if (x == l && x == r){
            return tree[o];
        }
        if (lazy[o] != -1) push_down(o);
        int mid = (l + r) / 2;
        if (x <= mid) return query(x, l, mid, o << 1);
        if (x > mid) return query(x, mid + 1, r, o << 1 | 1);
    }
    
    void update(int ql, int qr, int l, int r, int o, int val){
        if (ql <= l && qr >= r){
            if (lazy[o] == -1) lazy[o] = val;
            lazy[o] = min(lazy[o], val);
            tree[o] = min(lazy[o], tree[o]);
            return ;
        }
        if (lazy[o] != -1)push_down(o);
        int mid = (l + r) / 2;
        if (ql <= mid) update(ql, qr, l, mid, o << 1, val);
        if (qr > mid) update(ql, qr, mid + 1, r, o << 1 | 1, val);
        tree[o] = min(tree[o << 1], tree[o << 1 | 1]);
    }
    int ans[maxn];
    void solve(){
        build_tree(1, n, 1);
        for (int i = 1; i <= n; i++){
            for (int j = 0; j < ve[i].size(); j++){
                int pos = ve[i][j].fi, id = ve[i][j].se;
                ans[id] = query(pos, 1, n, 1);
            }
            int lb = i + 1, rb = nxt[i] - 1;
            if (lb <= rb) update(lb, rb, 1, n, 1, a[i]);
        }
        for (int i = 1; i <= q; i++){
            printf("%d
    ", ans[i]);
        }
    }
    
    int main(){
        cin >> n >> q;
        for (int i = 1; i <= n; i++) {
            scanf("%d", a + i);
            if (a[i] <= n + 10) vis[a[i]] = true;
            mex[i] = mex[i - 1];
            while (vis[mex[i]]) mex[i]++;
            pos[i] = n + 1;
        }
        for (int i = 0; i <= n; i++) pos[i] = n + 1;
        for (int i = n; i >= 1; i--){
            if (a[i] >= n + 10){
                nxt[i] = n + 1; continue;
            }
            nxt[i] = pos[a[i]];
            pos[a[i]] = i;
        }
        for (int i = 1; i <= q; i++){
            int l, r; scanf("%d%d", &l, &r);
            ve[l].pb(mk(r, i));
        }
        solve();
        return 0;
    }
    View Code
  • 相关阅读:
    HUSTOJ:Transit Tree Path
    HUSTOJ:5500 && 洛谷:P1412:经营与开发
    hdu:2036.改革春风吹满地
    hdu:2030.汉字统计
    Leetcode:338. Bit位计数
    【学习笔记】圆方树(CF487E Tourists)
    BZOJ3238 [Ahoi2013]差异
    CF 187D BRT Contract
    CF 36E Two Paths
    CF 49E Common ancestor
  • 原文地址:https://www.cnblogs.com/heimao5027/p/6668430.html
Copyright © 2020-2023  润新知