• 使用TensorFlow的卷积神经网络识别手写数字(3)-识别篇


      1 from PIL import Image
      2 import numpy as np
      3 import tensorflow as tf
      4 import time 
      5 
      6 
      7 bShowAccuracy = True
      8 
      9 
     10 # 加载手写图片
     11 def loadHandWritingImage(strFilePath):
     12     im = Image.open(strFilePath, 'r')
     13     ndarrayImg = np.array(im.convert("L"), dtype='float')
     14 
     15     return ndarrayImg
     16 
     17 
     18 # 最大最小值归一化
     19 def normalizeImage(ndarrayImg, maxVal = 255, minVal = 0):
     20     ndarrayImg = (ndarrayImg - minVal) / (maxVal - minVal)
     21     return ndarrayImg
     22 
     23 
     24 
     25 # 1)构造自己的手写图片集合,用加载的已训练好的模型识别
     26 print('构造待识别数据...')
     27 
     28 # 待识别的手写图片,文件名是0...39
     29 fileList = range(0, 39+1) 
     30 
     31 ndarrayImgs = np.zeros((len(fileList), 784)) # x行784列
     32 
     33 for index in range(len(fileList)):
     34     
     35     # 加载图片
     36     ndarrayImg = loadHandWritingImage('28-pixel-numbers/' + str(index) + '.png')
     37 
     38     # 归一化
     39     normalizeImage(ndarrayImg)
     40 
     41     # 转为1x784的数组
     42     ndarrayImg = ndarrayImg.reshape((1, 784))
     43 
     44     # 加入到测试集中
     45     ndarrayImgs[index] = ndarrayImg
     46 
     47 
     48 ##import sys
     49 ##sys.exit()
     50 
     51 # 构建测试样本的实际值集合,用于计算正确率
     52 
     53 # 真实结果,用于测试准确度。40行10列
     54 ndarrayLabels = np.eye(10, k=0, dtype='float')
     55 ndarrayLabels = np.vstack((ndarrayLabels, ndarrayLabels))
     56 ndarrayLabels = np.vstack((ndarrayLabels, ndarrayLabels))
     57 
     58 
     59 # 2)下面开始CNN相关
     60 
     61 print('定义Tensor...')
     62 
     63 #定义变量和计算公式
     64 
     65 def conv2d(x, W):
     66     return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
     67 
     68 def max_pool_2x2(x):
     69     return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
     70                         strides=[1, 2, 2, 1], padding='SAME')
     71 
     72 def weight_variable(shape):
     73     initial = tf.truncated_normal(shape, stddev=0.1)
     74     return tf.Variable(initial)
     75 
     76 def bias_variable(shape):
     77     initial = tf.constant(0.1, shape=shape)
     78     return tf.Variable(initial)
     79 
     80 
     81 x = tf.placeholder(tf.float32, shape=[None, 784])
     82 y_ = tf.placeholder(tf.float32, shape=[None, 10])
     83 
     84 
     85 W_conv1 = weight_variable([5, 5, 1, 32])
     86 b_conv1 = bias_variable([32])
     87 
     88 x_image = tf.reshape(x, [-1, 28, 28, 1])
     89 
     90 h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
     91 h_pool1 = max_pool_2x2(h_conv1)
     92 
     93 
     94 W_conv2 = weight_variable([5, 5, 32, 64])
     95 b_conv2 = bias_variable([64])
     96 
     97 h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
     98 h_pool2 = max_pool_2x2(h_conv2)
     99 
    100 
    101 
    102 W_fc1 = weight_variable([7 * 7 * 64, 1024])
    103 b_fc1 = bias_variable([1024])
    104 
    105 h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
    106 h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
    107 
    108 
    109 keep_prob = tf.placeholder(tf.float32)
    110 h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
    111 
    112 
    113 W_fc2 = weight_variable([1024, 10])
    114 b_fc2 = bias_variable([10])
    115 
    116 y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
    117 
    118 correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
    119 accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    120 
    121 
    122 with tf.Session() as sess:
    123     sess.run(tf.global_variables_initializer())
    124 
    125     # 3)创建saver对象并加载模型
    126     print('加载已训练好的CNN模型...')
    127     saver = tf.train.Saver()
    128     saver.restore(sess, "saved_model/cnn_handwrite_number.ckpt")
    129 
    130     # 测试耗时
    131     print('进行预测:')
    132   
    133     start = time.time()
    134 
    135     # 4)执行预测
    136     output = sess.run(y_conv, feed_dict={x: ndarrayImgs, keep_prob:1.0})  
    137 
    138     end = time.time()
    139 
    140     print('预测数字为:
    ', output.argmax(axis=1)) # axis:0表示按列,1表示按行
    141     print('实际数字为:
    ', ndarrayLabels.argmax(axis=1))
    142 
    143 
    144     if(bShowAccuracy):      
    145         accu = accuracy.eval(feed_dict={x: ndarrayImgs, y_: ndarrayLabels, keep_prob: 1.0})
    146         print('识别HateMath苍劲有力的手写数据%d个, 准确率为 %.2f%%, 每个耗时%.5f秒' %
    147               (len(ndarrayImgs), accu*100, (end-start)/len(ndarrayImgs)))
    148 
    149         
    150 
    151 # todo
    152 # 图像分割的准确度
    153 
    154   
    本文由hATEmATH原创 转载请注明出处:http://www.cnblogs.com/hatemath/
  • 相关阅读:
    使用“.yml”文件缩进需要注意的问题
    ubuntu忘记用户密码解决方法
    springboot整合mybatis使用xml映射文件和使用注解两种方式的切换
    腾讯课堂目标2017高中数学联赛基础班-2作业题解答-12
    腾讯课堂目标2017高中数学联赛基础班-2作业题解答-11
    2016猿辅导初中数学竞赛训练营作业题解答-14
    腾讯课堂目标2017初中数学联赛集训队作业题解答-11
    腾讯课堂目标2017高中数学联赛基础班-2作业题解答-10
    2016猿辅导初中数学竞赛训练营作业题解答-13
    腾讯课堂目标2017初中数学联赛集训队作业题解答-10
  • 原文地址:https://www.cnblogs.com/hatemath/p/8513799.html
Copyright © 2020-2023  润新知