• Codeforces 474E Pillars (树状数组+dp)


    数据结构优化 (dp) 的题目都很套路

    (f[i]) 表示取到 (i)(i) 必取的最大长度

    那么显然:

    [f(i)=maxlimits_{j=1}^i(f(j))+1 (|h_i-h_j| ge d) ]

    直接枚举 (O(n^2)) 考虑优化

    拆去绝对值后发现其实就是 (h_j le h_i-d)(h_j ge h_i+d)。相当于对两个区间查询最大值

    (h) 进行离散化后可以二分位置,之后就可以用数据结构优化了

    可以是一个线段树或两颗树状数组,我选择后者

    时间复杂度 (O(n~log~n))

    #include <map>
    #include <set>
    #include <ctime>
    #include <queue>
    #include <stack>
    #include <cmath>
    #include <vector>
    #include <bitset>
    #include <cstdio>
    #include <cctype>
    #include <string>
    #include <numeric>
    #include <cstring>
    #include <cassert>
    #include <climits>
    #include <cstdlib>
    #include <iostream>
    #include <algorithm>
    #include <functional>
    using namespace std ;
    #define int long long
    #define rep(i, a, b) for (int i = (a); i <= (b); i++)
    #define per(i, a, b) for (int i = (a); i >= (b); i--)
    #define loop(s, v, it) for (s::iterator it = v.begin(); it != v.end(); it++)
    #define cont(i, x) for (int i = head[x]; i; i = e[i].nxt)
    #define clr(a) memset(a, 0, sizeof(a))
    #define ass(a, sum) memset(a, sum, sizeof(a))
    #define lowbit(x) (x & -x)
    #define all(x) x.begin(), x.end()
    #define ub upper_bound
    #define lb lower_bound
    #define pq priority_queue
    #define mp make_pair
    #define pb push_back
    #define fi first
    #define se second
    #define iv inline void
    #define enter cout << endl
    #define siz(x) ((int)x.size())
    #define file(x) freopen(#x".in", "r", stdin),freopen(#x".out", "w", stdout)
    typedef long long ll ;
    typedef unsigned long long ull ;
    typedef pair <int, int> pii ;
    typedef vector <int> vi ;
    typedef vector <pii> vii ;
    typedef queue <int> qi ;
    typedef queue <pii> qii ;
    typedef set <int> si ;
    typedef map <int, int> mii ;
    typedef map <string, int> msi ;
    const int N = 100010 ;
    const int INF = 0x3f3f3f3f ;
    const int iinf = 1 << 30 ;
    const ll linf = 2e18 ;
    const int MOD = 1000000007 ;
    const double eps = 1e-7 ;
    void print(int x) { cout << x << endl ; exit(0) ; }
    void PRINT(string x) { cout << x << endl ; exit(0) ; }
    void douout(double x){ printf("%lf
    ", x + 0.0000000001) ; }
    
    int n, d, tt ;
    int tmp[N], a[N], bit1[N], bit2[N], ans[N], to[N] ;
    
    void lsh() {
    	rep(i, 1, n) tmp[i] = a[i] ;
    	sort(tmp + 1, tmp + n + 1) ;
    	tt = unique(tmp + 1, tmp + n + 1) - (tmp + 1) ;
    }
    
    int Max(int a, int b) {
    	return ans[a] < ans[b] ? b : a ;
    }
    
    void add1(int x, int y) {
    	for (; x <= tt; x += lowbit(x)) bit1[x] = Max(bit1[x], y) ;
    }
    
    int ask1(int x) {
    	int ans = 0 ;
    	for (; x; x -= lowbit(x)) ans = Max(bit1[x], ans) ;
    	return ans ;
    }
    
    void add2(int x, int y) {
    	for (; x <= tt; x += lowbit(x)) bit2[x] = Max(bit2[x], y) ;
    }
    
    int ask2(int x) {
    	int ans = 0 ;
    	for (; x; x -= lowbit(x)) ans = Max(bit2[x], ans) ;
    	return ans ;
    }
    
    signed main(){
    	scanf("%lld%lld", &n, &d) ;
    	rep(i, 1, n) scanf("%lld", &a[i]) ;
    	lsh() ;
    	per(i, n, 1) {
    		int x = lb(tmp + 1, tmp + tt + 1, a[i] + d) - tmp ;
    		int y = ub(tmp + 1, tmp + tt + 1, a[i] - d) - (tmp + 1) ;
    		int res = Max(ask1(y), ask2(tt - x + 1)) ;
    		ans[i] = ans[res] + 1 ;
    		to[i] = res ;
    		int pos = lb(tmp + 1, tmp + tt + 1, a[i]) - tmp ;
    		add1(pos, i) ;
    		add2(tt - pos + 1, i) ;
    	}
    //	rep(i, 1, n) cout << ans[i] << " " ; enter ;
    	int s = 0 ;
    	rep(i, 1, n) s = Max(s, i) ;
    	printf("%lld
    ", ans[s]) ;
    	while (s) {
    		printf("%lld ", s) ;
    		s = to[s] ;
    	}
    	enter ;
    	return 0 ;
    }
    
    /*
    写代码时请注意:
    	1.ll?数组大小,边界?数据范围?
    	2.精度?
    	3.特判?
    	4.至少做一些
    思考提醒:
    	1.最大值最小->二分?
    	2.可以贪心么?不行dp可以么
    	3.可以优化么
    	4.维护区间用什么数据结构?
    	5.统计方案是用dp?模了么?
    	6.逆向思维?
    */
    
    
    
    加油ヾ(◍°∇°◍)ノ゙
  • 相关阅读:
    C#语法糖
    C#十种语法糖
    委托
    C#迭代器
    C#事件
    C#事件
    c# event 事件浅析
    ASP.NET CORE 增删改查
    asp.net core 增删改查
    asp.net core 搭建MVC
  • 原文地址:https://www.cnblogs.com/harryhqg/p/10446707.html
Copyright © 2020-2023  润新知