• 【machine learning通俗讲解code逐行注释】之线性回归实现


    现在机器学习算法在分类、回归、数据挖掘等问题上运用的十分广泛,对于初学者来说,可能一听到'算法'或其他的专属名词都感觉高深莫测,以致很多人望而却步,这让很多人在处理很多问题上失去了一个很有用的工具。机器学习的算法并没有那么高深,这里我就用最通俗的语言来细致解释算法的表达的意义,,并且很多人对程序的实现这一部分也会望而却步,网上固然有很多现成的程序,但是鉴于大部分没有注释,所以有时候需要花费很大的精力去解读程序,有时候甚至不得其解,这里我也会对每个讲解的算法的程序进行讲解,大部分是逐行讲解,务必做到最精细,把程序的来龙去脉表达清楚,这样对于学习机器学习算法的读者势必会事半功倍!

    转载时候最好标注 http://www.cnblogs.com/happylion/ 或 http://blog.sina.com.cn/ahappylion

    开始了,学习吧,加油!

    ......................................................................分割线............................................................................

    上一个博客已经说了我们要线性回归的主要内容,通俗的讲就是:你有一个样本X=[x1,x2,…,xn],然后你需要做的就是找到一组参数W=[w1,w2…wn],使

    样本各个元素的线性叠加和w1*x1+w2*x2+…+wn*xn尽量等于样本的label。所以我们的cost function就是:

    image
    也就是说我们的目的就是惩罚那些线性叠加和不等于label的样本。然后我们最小化这个cost function,当cost function达到收敛的时候,这时候的参数就是我们需要的蚕食。我们有两种方法去优化我们的参数,上一个博客说了,我们线性回归的参数是有显式解的。就是上一节提到的normal equations,w=inv(X’*X)*X’*y。(X的每一行是一个样本),除此之外,我们也可以用梯度下降法来求得我们的参数,梯度下降法的解释将在下面的博客中提到,这里我们用一个例子来说明一下:
    题目是:50个数据样本点,其中x为这50个小朋友到的年龄,年龄为2岁到8岁,年龄可有小数形式呈现。Y为这50个小朋友对应的身高,当然也是小数形式表示的。现在的问题是要根据这50个训练样本,估计出3.5岁和7岁时小孩子的身高。(数据下载

    采用normal equations方法求解:

     1 %%方法一
     2 x = load('ex2x.dat');
     3 y = load('ex2y.dat');
     4 plot(x,y,'*')
     5 xlabel('height')
     6 ylabel('age')
     7 x = [ones(size(x,2),1),x];%因为size(x)会出来的x这个向量两个维度
     8 %度,我们只需要第一个维度,我们还要再加一列1是因为这里把wx+b变成了w’x这样我们化成齐次的线性方程,所以我们要把x扩成一列1。
     9 w=inv(x'*x)*x'*y %这个就是解的公式
    10 hold on
    12 plot(x(:,2),0.0639*x(:,2)+0.7502)%这里的0.7502就是求得的w向量的第一个值,也就是wx+b的那个b,w第二个值就是wx+b的w
    利用梯度下降法进行迭代求解系数
    方法二:
     1 clear all; close all; clc
     2 x = load('ex2x.dat'); y = load('ex2y.dat');
     3 m = length(y); % number of training examples
     4 % Plot the training data
     5 figure; % open a new figure window  这个figure也可以不写,没什么影响
     6 plot(x, y, 'o');%用圆圈表示数据点 
     7 ylabel('Height in meters')%给y值写上代表什么意思
     8 xlabel('Age in years')
    10 % Gradient descent
    11 x = [ones(m, 1) x]; % Add a column of ones to x x最开始增加一列1,也就是每一个数据点增加一维,并且这一维都是1,
    12 %相当于要求得线性方程是齐次的w'x=Y,x是变成的二维的,Y代表根据训练的w'x预测的Y值
    13 theta = zeros(size(x(1,:)))'; % initialize fitting parameters w'初始化为[0;0]
    14 MAX_ITR = 1500;
    15 alpha = 0.07;%学习速率
    17 for num_iterations = 1:MAX_ITR
    18     grad = (1/m).* x' * ((x * theta) - y);%grd具体是怎么算的可以看下下面的推导,只是这里的1/m不知道是怎么得出来的,
    19     %我的是2m,注意grad是一个2*1的向量。并且公式里面的形式
    20     %跟这里有点不同,是因为在公式中xi代表一个向量,这里x是一个矩阵,并且每一行代表一个样本,所以这里代码中前面是x'后面是x,
    21     %在公式中正好相反    .* 是点乘,不是内积,向量的内积结果是个数,这还是一个向量
    22   theta = theta - alpha .* grad;  %这里如果令grad=0求极值得到参数的方法就是前面的那个方法,这里不是grad=0,而是一次次 %的迭代,求最值。
    23 end
    24 hold on; % keep previous plot visible
    25 plot(x(:,2), x*theta, '-')%这个就是回归曲线的那个图
    26 legend('Training data', 'Linear regression')%标出图像中各曲线标志所代表的意义,就是每个数据点表示成的圆圈或线段所代表 %的意义
    27 hold off % don't overlay any more plots on this figure,指关掉前面的那幅图
    28 % Closed form solution for reference
    29 % You will learn about this method in future videos
    30 exact_theta = (x' * x)x' * y%不知道这是啥意思
    31 % Predict values for age 3.5 and 7
    32 predict1 = [1, 3.5] *theta
    33 predict2 = [1, 7] * theta
    34 % Grid over which we will calculate J
    35 theta0_vals = linspace(-3, 3, 100);%生成一个从-3到3之间有均匀的100个元素的向量
    36 theta1_vals = linspace(-1, 1, 100);
    37 % initialize J_vals to a matrix of 0's
    38 J_vals = zeros(length(theta0_vals), length(theta1_vals));
    39 for i = 1:length(theta0_vals)
    40       for j = 1:length(theta1_vals)
    41       t = [theta0_vals(i); theta1_vals(j)];    
    42       J_vals(i,j) = (0.5/m) .* (x * t - y)' * (x * t - y);%当参数的取值是从(-3,1)到(3,1)
    43       %的矩形内均匀采样取值时(取了100*100个参数),所有样本xi与每个参数对应
    44       %的回归方程的误差就是 J_vals(i,j)的一个值
    45       end
    46 end
    47 J_vals = J_vals';
    48 % Surface plot
    49 figure;
    50 surf(theta0_vals, theta1_vals, J_vals)%画出参数与损失函数的图像。注意用这个surf比较蛋疼,surf(X,Y,Z)是这样的,
    51 %X,Y是向量,Z是矩阵,用X,Y铺成的网格(100*100个点)与Z的每个点
    52 %形成一个图形,但是是怎么对应的哪,蛋疼之处就是,你的X的第二个元素与Y的第一个元素形成的那一个点不是和Z(2,1)的值对应!!
    53 %而是和Z(1,2)对应!!因为前面形成Z(2,1)时,是X的第二个元素与Y的第一个元素
    54 %所以J_vals前面才要转置。
    55 xlabel('	heta_0'); ylabel('	heta_1');
    56 % Contour plot
    57 figure;
    58 % Plot J_vals as 15 contours spaced logarithmically between 0.01 and 100
    59 contour(theta0_vals, theta1_vals, J_vals, logspace(-2, 2, 15))%画出等高线
    60 xlabel('	heta_0'); ylabel('	heta_1');%类似于转义字符,但是最多只能是到参数0~9
     
     实验结果:训练样本散点和回归曲线预测图:

    损失函数与参数之间的曲面图:

     
    参考:http://www.cnblogs.com/tornadomeet/archive/2013/03/15/2961660.html
  • 相关阅读:
    atitit.为什么技术的选择方法java超过.net有前途
    HDU 4022 Bombing STL 模拟题
    定制XP引导屏幕背景图像和替换windows这句话
    《STL源代码分析》---stl_heap.h读书笔记
    2015在大型多人在线游戏市场报告
    于Unity3D调用安卓AlertDialog
    jQuery整理笔记5----jQuery大事
    推断字符串数组里面是空的
    软测试-数据结构
    2014第18周三
  • 原文地址:https://www.cnblogs.com/happylion/p/4232496.html
Copyright © 2020-2023  润新知