• Matlab网格划分


    之前转载了一篇博客http://blog.sina.com.cn/s/blog_6163bdeb0102dvay.html,讲Matlab网格划分程序Distmesh,看了看程序,感觉程序写得有很多值得学的地方,所以又自己重新看了一看,加了一些注释,最后再总结一下学到的东西吧。

    源代码的地址已经改变,如下http://people.sc.fsu.edu/~jburkardt/m_src/distmesh/distmesh.html。程序给出了20个划分的例子,文件名为p1_demo.m~p20_demo.m,直接运行程序可以看到划分的动画效果,每个例子基本都是设置一些参数,然后调用distmesh_2d函数进行网格划分,最后得到划分的节点p和各三角形t,最后将划分的三角形绘制出来。划分结果如下

    p01_meshp14_mesh

                      p1_demo                                    p14_demo

    p05_meshp18_mesh_nonuniform

                    p5_demo                                      p18_demo

    进一步加注释的程序(需要学习的地方用颜色标记):

    function [ p, t ] = distmesh_2d ( fd, fh, h0, box, iteration_max, pfix, varargin )
    %% DISTMESH_2D is a 2D mesh generator using distance functions.
    %  Example:
    %    Uniform Mesh on Unit Circle:
    %      fd = inline('sqrt(sum(p.^2,2))-1','p');
    %      [p,t] = distmesh_2d(fd,@huniform,0.2,[-1,-1;1,1],100,[]);
    %    Rectangle with circular hole, refined at circle boundary:
    %      fd = inline('ddiff(drectangle(p,-1,1,-1,1),dcircle(p,0,0,0.5))','p');
    %      fh = inline('min(4*sqrt(sum(p.^2,2))-1,2)','p');
    %      [p,t] = distmesh_2d(fd,fh,0.05,[-1,-1;1,1],500,[-1,-1;-1,1;1,-1;1,1]);
    %  Parameters:
    %    Input, function FD, signed distance function d(x,y).
    %    fd:d=fd(p),p=[x y],fd为给定任一点到边界的有符号距离函数,负号表示在区域内,正号为在区域外
    %    Input, function FH, scaled edge length function h(x,y).
    %    fh:就是网格大小的函数
    %    Input, real H0, the initial edge length.
    %    h0:也就是h, 网格的初始大小
    %    Input, real BOX(2,2), the bounding box [xmin,ymin; xmax,ymax].
    %    box:最大外围矩形范围
    %    Input, integer ITERATION_MAX, the maximum number of iterations.
    %    The iteration might terminate sooner than this limit, if the program decides
    %    that the mesh has converged.
    %    iteration_max:允许的最大迭代次数
    %    Input, real PFIX(NFIX,2), the fixed node positions.
    %    pfix:网格中需要固定的点坐标,也就是一定需要出现在网格中的点
    %    Input, VARARGIN, aditional parameters passed to FD and FH.%
    %    Output, real P(N,2), the node positions.
    %    p:网格点的x,y坐标
    %    Output, integer T(NT,3), the triangle indices.
    %    t:输出网格任意一个三角形的三个顶点
    %  Local parameters:
    %    Local, real GEPS, a tolerance for determining whether a point is "almost" inside
    %    the region.  Setting GEPS = 0 makes this an exact test.  The program currently
    %    sets it to 0.001 * H0, that is, a very small multiple of the desired side length
    %    of a triangle.  GEPS is also used to determine whether a triangle falls inside
    %    or outside the region.  In this case, the test is a little tighter.  The centroid
    %    PMID is required to satisfy FD ( PMID ) <= -GEPS.
    %    局部变量geps:容忍度,一个点是否属于区域,也在判断三角形是否属于区域内时使用

    dptol = 0.001;              % 收敛精度
    ttol = 0.1;                 % 三角形划分精度(百分比)
    Fscale = 1.2;               % 放大比例
    deltat = 0.2;               % 相当于柔度
    geps = 0.001 * h0;          % 容忍度
    deps = sqrt ( eps ) * h0;   % 微小变化dx
    iteration = 0;              % 迭代次数
    triangulation_count = 0;    % 三角形划分次数

    %  1. Create the initial point distribution by generating a rectangular mesh
    %  in the bounding box.
    % 根据初始网格的大小h0,先把能涵盖欲划分区域的最大矩形划分为结构网格。
    [ x, y ] = meshgrid ( box(1,1) : h0           : box(2,1), ...
        box(1,2) : h0*sqrt(3)/2 : box(2,2) );
    %  Shift the even rows of the mesh to create a "perfect" mesh of equilateral triangles.
    %  Store the X and Y coordinates together as our first estimate of "P", the mesh points
    %  we want.
    % 然后把偶数行的点整体向右平移半格,得到正三角形划分
    x(2:2:end,:) = x(2:2:end,:) + h0 / 2;
    p = [ x(:), y(:) ];
    %  2. Remove mesh points that are outside the region,
    %  then satisfy the density constraint.
    %  Keep only points inside (or almost inside) the region, that is, FD(P) < GEPS.
    % 根据fd的函数定义,移除边界外的点
    p = p( feval_r( fd, p, varargin{:} ) <= geps, : ); % 1
    %  Set R0, the relative probability to keep a point, based on the mesh density function.
    r0 = 1 ./ feval_r( fh, p, varargin{:} ).^2;
    %  Apply the rejection method to thin out points according to the density.
    % 根据网格密度函数fh,每个点上产生一个0-1随机数,判断是否小于r0/max(r0)大于的话,该点被删除
    p = [ pfix; p(rand(size(p,1),1) < r0 ./ max ( r0 ),: ) ];
    [ nfix, dummy ] = size ( pfix );
    %  Especially when the user has included fixed points, we may have a few
    %  duplicates.  Get rid of any you spot.
    % 当指定了某些点要保留的时候,把保留的点加入,删除重复的点。
    p = unique ( p, 'rows' ); % 2


    N = size ( p, 1 );

    %  If ITERATION_MAX is 0, we're almost done.
    %  For just this case, do the triangulation, then exit.
    %  Setting ITERATION_MAX to 0 means that we can see the initial mesh
    %  before any of the improvements have been made.
    % 如果最大迭代次数为负,则直接结束
    if ( iteration_max <= 0 )
        t = delaunayn ( p ); % 3
        triangulation_count = triangulation_count + 1;
        return
    end
    pold = inf; % 第一次迭代前设置旧的点的坐标为无穷
    while ( iteration < iteration_max )
        iteration = iteration + 1;
        if ( mod ( iteration, 10 ) == 0 )
            fprintf ( 1, '  %d iterations,', iteration );
            fprintf ( 1, '  %d triangulations. ', triangulation_count );
        end
       
        %  3. Retriangulation by the Delaunay algorithm.
        %  Was there large enough movement to retriangulate?
        %  If so, save the current positions, get the list of
        %  Delaunay triangles, compute the centroids, and keep
        %  the interior triangles (whose centroids are within the region).
        %
        % 先判断上次移动后的点和旧的点之间的移动距离,如果小于某个阀值,停止迭代
        if ( ttol < max ( sqrt ( sum ( ( p - pold ).^2, 2 ) ) / h0 ) )
            pold = p;               % 如果还可以移动,保存当前的节点
            t = delaunayn ( p );    % 利用delauny算法,生成三角形网格
            triangulation_count = triangulation_count + 1;          % 划分次数加1
            pmid = ( p(t(:,1),:) + p(t(:,2),:) + p(t(:,3),:) ) / 3; % 计算三角形的重心
            t = t( feval_r( fd, pmid, varargin{:} ) <= -geps, : );   % 移除重心在区域外的三角形
           
            %  4. Describe each bar by a unique pair of nodes.
            % 生成网格的边的集合,也就是相邻点之间连接的线段
            bars = [ t(:,[1,2]); t(:,[1,3]); t(:,[2,3]) ];
            bars = unique ( sort ( bars, 2 ), 'rows' );
           
            %  5. Graphical output of the current mesh
            trimesh ( t, p(:,1), p(:,2), zeros(N,1) )               % 绘制划分的三角形% 3
            view(2), axis equal, axis off, drawnow
        end
       
        %  6. Move mesh points based on bar lengths L and forces F
        %  Make a list of the bar vectors and lengths.
        %  Set L0 to the desired lengths, F to the scalar bar forces,
        %  and FVEC to the x, y components of the bar forces.
        %  At the fixed positions, reset the force to 0.
        barvec = p(bars(:,1),:) - p(bars(:,2),:);   % 生成bar的矢量
        L = sqrt ( sum ( barvec.^2, 2 ) );          % 计算bar的长度
        % 根据每个bar的中点坐标,计算需要的三角形边的边长(这个在fh函数里控制)
        hbars = feval_r( fh, (p(bars(:,1),:)+p(bars(:,2),:))/2, varargin{:} );
        % 计算需要的bar的长度,已经乘上了两个scale参数 Fscale, sqrt ( sum(L.^2) / sum(hbars.^2) );
        % 具体可参考他们的paper
        L0 = hbars * Fscale * sqrt ( sum(L.^2) / sum(hbars.^2) );
        % 计算每个bar上力
        F = max ( L0 - L, 0 );
        % bar上力的分量,x,y方向
        Fvec = F ./ L * [1,1] .* barvec;
        % 计算Ftot, 每个节点上力的残量
        Ftot = full ( sparse(bars(:,[1,1,2,2]),ones(size(F))*[1,2,1,2],[Fvec,-Fvec],N,2) );
        % 对于固定点,力的残量为零
        Ftot(1:size(pfix,1),:) = 0;
        % 根据每个节点上的受力,移动该点
        p = p + deltat * Ftot;
       
        %  7. Bring outside points back to the boundary
        %  Use the numerical gradient of FD to project points back to the boundary.
        d = feval_r( fd, p, varargin{:} ); % 计算点到边界距离
        ix = d > 0;
        % 计算移动梯度,相对边界
        dgradx = ( feval_r(fd,[p(ix,1)+deps,p(ix,2)],varargin{:}) - d(ix) ) / deps; % 4
        dgrady = ( feval_r(fd,[p(ix,1),p(ix,2)+deps],varargin{:}) - d(ix) ) / deps;
        % 将这些移动到边界外的投射回边界上
        p(ix,:) = p(ix,:) - [ d(ix) .* dgradx, d(ix) .* dgrady ];
        %  I needed the following modification to force the fixed points to stay.
        %  Otherwise, they can drift outside the region and be lost.
        % 修正,以免一些点移到区域外而丢失
        p(1:nfix,1:2) = pfix;
        N = size ( p, 1 );
       
        %  8. Termination criterion: All interior nodes move less than dptol (scaled)
        if ( max ( sqrt ( sum ( deltat * Ftot ( d < -geps,:).^2, 2 ) ) / h0 ) < dptol )
            break;
        end
    end
    end

    值得学习的地方:

    1.feval_r(fd, p, varargin{:})

    这相当于是回调函数的用法,将某些完成特定功能的函数作为输入参数传递进来,需要实现某些功能时则调用此函数,这样当想改变特定功能时,直接改变传进来的函数句柄就可以了。而且完成特定功能的函数的额外参数可以由varargin传入。


    2.unique ( p, 'rows' );

    unique函数属于时间序列分析中的功能,最近借了一本书正好看到,时间序列有一些列处理方法函数,可以很方便的处理作为时间序列的向量。

    3.delaunayn 、trimesh

    这是涉及三角形划分的matlab功能,感觉挺使用的。一方面,有限元方法需要网格划分,有这些函数,如虎添翼,另外在matlab实现三维的类似OpenGL的显示、操作等,使用patch最方便了,而patch最方便的使用方法是传入点和面,而如何构造点和面呢,这里给出了很好的答案。

    4.deps = sqrt ( eps ) * h0;   % 微小变化dx

    dgradx = ( feval_r(fd,[p(ix,1)+deps,p(ix,2)],varargin{:}) - d(ix) ) / deps;

    这个相当于是求函数微分、梯度,本来matlab函数传入的量是离散的,感觉顶多求差分,突然发现这种想法太简单了,函数的定义域是连续的,连续的就可以求微分,这里提供了一种很好方法。

    这也提供了一种很好的提示,以前一直拿c、c++的编程思想用matlab,现在发现使用matlab的更有效率的方法是使用数学函数的思想,matlab的函数不是c、c++中响应函数的那个函数,而是定义在实数域上的数学函数,用来处理各种数学问题。也可能是之前理解c、c++中的函数就应该用这种思想吧!

    此程序中就实现了各种数学意义上的计算,如求点到线的距离、求梯度、算分量等,看了这个程序,才感觉matlab确实是数学的语言工具。

  • 相关阅读:
    BeforeFieldInit解析(zz)
    自定义控件
    How to make Office VBA code interact with a VSTO applicationlevel addin
    总结
    IL汇编语言程序设计目录
    zz如何精简用户界面
    volatile关键字的作用(zz)
    外企面试基本涵盖了所有问题(拿得别人的,很有用)
    Excel 2007 There was a problem sending the command to the program
    数据库技巧
  • 原文地址:https://www.cnblogs.com/haoyul/p/5909427.html
Copyright © 2020-2023  润新知