Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 728 Accepted Submission(s): 209
Problem Description
Consider a code string S of N symbols, each symbol can only be 0 or 1. In any consecutive substring of S, the number of 0's differs from the number of 1's by at most K. How many such valid code strings S are there?
For example, when N is 4, and K is 3, there are two invalid codes: 0000 and 1111.
Input
The input consists of several test cases. For each case, there are two positive integers N and K in a line.
N is in the range of [1, 62].
K is in the range of [2, 5].
Output
Output the number of valid code strings in a line for each case.
Sample Input
Sample Output
2
14
//有一个长为 i 的 0-1 组成的序列,问任意连续长的子序列 0 1 数量差都不超过 m 的情况多少种
// dp[i][j][k] 意思是长为 i 的序列中 0 比 1 最多多 j 个,且长为 i 的序列中 1 比 0 最多多 k 个这样的序列的个数
所以 j,k最小为 0
dp [i][j][k] = dp[i-1][max(0,j-1)][k+1] // 填 1
+dp[i-1][j+1][max(0,k-1)] // 填 0
1 #include <bits/stdc++.h> 2 using namespace std; 3 #define LL long long 4 5 int n,m; 6 LL dp[105][10][10]; //长为 i 的序列,0比1最多多 j 个,且1比0最多多 k 个 7 8 int main() 9 { 10 while (scanf("%d%d",&n,&m)!=EOF) 11 { 12 memset(dp,0,sizeof(dp)); 13 dp[0][0][0]=1; 14 for (int i=0;i<=n;i++) 15 { 16 for (int j=0;j<=m;j++) 17 { 18 for (int k=0;k<=m;k++) 19 { 20 dp[i+1][j+1][max(k-1,0)]+=dp[i][j][k]; // 下一个数是 0 21 dp[i+1][max(j-1,0)][k+1]+=dp[i][j][k]; // 下一个数是 1 22 } 23 } 24 } 25 LL ans = 0; 26 for (int i=0;i<=m;i++) 27 for (int j=0;j<=m;j++) 28 ans += dp[n][i][j]; 29 printf("%lld ",ans); 30 } 31 return 0; 32 }