• QQpet exploratory park(DP)


    QQpet exploratory park

    Today, more and more people begin to raise a QQpet. You can get a lot of pleasure from it, although it does not have a real life and it calls for huge patience to take care of it. There is a place called QQpet exploratory park in the world. Every week, you can get a chance to have a joy there for free. The whole park contains 61 grids in a line, numbered from 0 to 60. Ten of them are important grids which will touch off ( 引发 ) an incident when the pet stands on. They are 5, 12, 22, 29, 33, 38, 42, 46, 50 and 55. Your pet is standing on the gird of number 0 in the beginning. You can toss the die ( 掷骰子 ) 10 times. Each time, the pet goes ahead n steps which n is the number from the die ( n ∈{ 1, 2, …, 6 } ). If your RP is great enough( calls RPG for short ), you will get many surprises in the important grids, such as some yuanbao( the money in QQpet world ), an improvement of your pet's ability, and the most attractive gift-package. Now, your task is to calculate the probability(概率) of touching each important grid. 

    InputThe first line of the input contains an integer t�C determining the number of datasets. Then t lines follows. Each line contains 6 numbers pi, i ∈{ 1, 2, …, 6 }, indicating the probability of getting 1 to 6 after you toss the die every time . p1+ p2+ … + p6 = 1. 
    OutputFor each test case, output the probability of touching each important grid. accurate up to 1 decimal places. There is a blank line between test cases. See the Sample Output to get the exactly output format. 
    Sample Input

    2
    0.000 1.000 0.000 0.000 0.000 0.000
    0.500 0.000 0.000 0.000 0.000 0.500

    Sample Output

    5: 0.0%
    12: 100.0%
    22: 0.0%
    29: 0.0%
    33: 0.0%
    38: 0.0%
    42: 0.0%
    46: 0.0%
    50: 0.0%
    55: 0.0%
    
    5: 3.1%
    12: 30.5%
    22: 27.3%
    29: 24.6%
    33: 21.9%
    38: 10.9%
    42: 0.8%
    46: 0.0%
    50: 4.4%
    55: 1.0%


    //题意:第一行测试组数 T ,然后给出掷骰子出现 1 2 3 4 5 6 的概率,问到达指定位置的概率是多少?
    简单概率dp
     1 #include <iostream>
     2 #include <stdio.h>
     3 #include <string.h>
     4 using namespace std;
     5 
     6 double dp[20][100]; // i 次到 j 的概率
     7 double p[10];
     8 double a[10];
     9 
    10 int main()
    11 {
    12     int T;
    13     cin>>T;
    14     while (T--)
    15     {
    16         for (int i=1;i<=6;i++)
    17             scanf("%lf",&p[i]);
    18         memset(dp,0,sizeof(dp));
    19         memset(a,0,sizeof(a));
    20         for (int i=1;i<=6;i++) dp[1][i]=p[i];
    21         for (int i=2;i<=10;i++)
    22         {
    23             for (int j=0;j<=60;j++)
    24             {
    25                 for (int k=1;k<=6;k++)
    26                     if (j-k>=0)
    27                         dp[i][j]+=dp[i-1][j-k]*p[k];
    28             }
    29         }
    30         for(int i=10;i>0;i--)    a[0]+=dp[i][5];  printf("5: %.1lf%%
    ",a[0]*100);
    31         for(int i=10;i>0;i--)    a[1]+=dp[i][12]; printf("12: %.1lf%%
    ",a[1]*100);
    32         for(int i=10;i>0;i--)    a[2]+=dp[i][22]; printf("22: %.1lf%%
    ",a[2]*100);
    33         for(int i=10;i>0;i--)    a[3]+=dp[i][29]; printf("29: %.1lf%%
    ",a[3]*100);
    34         for(int i=10;i>0;i--)    a[4]+=dp[i][33]; printf("33: %.1lf%%
    ",a[4]*100);
    35         for(int i=10;i>0;i--)    a[5]+=dp[i][38]; printf("38: %.1lf%%
    ",a[5]*100);
    36         for(int i=10;i>0;i--)    a[6]+=dp[i][42]; printf("42: %.1lf%%
    ",a[6]*100);
    37         for(int i=10;i>0;i--)    a[7]+=dp[i][46]; printf("46: %.1lf%%
    ",a[7]*100);
    38         for(int i=10;i>0;i--)    a[8]+=dp[i][50]; printf("50: %.1lf%%
    ",a[8]*100);
    39         for(int i=10;i>0;i--)    a[9]+=dp[i][55]; printf("55: %.1lf%%
    ",a[9]*100);
    40         if (T) cout<<endl;
    41     }
    42     return 0;
    43 }
    View Code



  • 相关阅读:
    大规模web服务读书笔记 狼
    MVC3如果虚拟目录中有点号,会导致静态文件404 狼
    CDN服务商和CDN常见问题 狼
    中文字段名,问题根源查询无聊话题。 狼
    NET下Session共享的几种实现方式 狼
    企业应用架构读书笔记与总结 狼
    Redis简单本机测试 狼
    你是否经历过这些,求如何继续才能提升 狼
    WinDbg配置和使用基础
    Python IDLE入门
  • 原文地址:https://www.cnblogs.com/haoabcd2010/p/6748255.html
Copyright © 2020-2023  润新知