• Pandas 复习2


    import pandas as pd
    import numpy as np 
    food_info = pd.read_csv('food_info.csv')
    1.处理缺失值(可使用平均数,众数填充)
        查看非缺失值的数据:
            price_is_null = pd.isnull(food_info["Price"])
            price = food_info["Price"][price_is_null==False]
        使用 fillna 填充
            food_info['Price'].fillna(food_info['Price'].mean(),inplace = True)
    2.求平均值
        food_info["Price"].mean()
    3.查看每一个 index 级,values 的平均值
        food_info.pivot(index = "",values = "",aggfunc = np.mean)
    4.查看总人数
        food_info.pivot(index = "",values = ["",""],aggfunc = np.sum)
    5.丢弃缺失值
        dropna_columns = food_info.dropna(axis = 1)
        将 Price 和 Time 列存在 NaN 的行去掉
            new_food_info = food_info.dropna(axis = 0,subset = ["Price","Time"])
    6.定位具体值到 83 
        row_index_83_price = food_info.loc[83,"Price"]
    7.进行排序(sort_values 默认升序)
        new_food_info.sort_values("Price")
    8.将索引值重新排序,使用 reset_index
        new_food_info.reset_index(drop = True)
    9.使用 apply 函数
        new_food_info.apply(函数名)
    10.查看缺失值的个数
        def not_null_count(column):
            column_null = pd.isnull(column)
            # column_null 为空的布尔类型
            null = column[column_null]
            # 将为空值的列表传递给 null 
            return len(null)
        column_null_count = food_info.apply(not_null_count)
    11.划分等级:年龄 成绩
        def which_class(row):
            pclass = row["Pclass"]
            if pd.isnull(pclass):
                return "未知等级"
            elif pclass == 1:
                return "第一级"
            elif pclass == 2:
                return "第二级"
            elif pclass == 3:
                return "第三级"
        new_food_info.apply(which_class,axis = 1)
    12.使用 pivot_table 展示透视表
        new_food_info.pivot_table(index = " ",values=" ")

    2020-04-11

  • 相关阅读:
    学习ASP.NET Web API框架揭秘之“HTTP方法重写”
    学习、摘录、目标——学习任务
    ASP.NET Core学习零散记录
    通过Nginx实现负载均衡
    通过IIS共享文件夹来实现静态资源"本地分布式"部署
    python2.7 django 错误汇总
    【心得】算法练习
    【数据结构】思维导图
    【算法】思维导图
    记录一次面试中二分查找的算法题
  • 原文地址:https://www.cnblogs.com/hany-postq473111315/p/12677896.html
Copyright © 2020-2023  润新知