转载:https://blog.csdn.net/ChuiGeDaQiQiu/article/details/88623267
转载:https://blog.csdn.net/cdknight_happy/article/details/79975060
可以基于人脸姿态估计,延伸到3D其他目标的姿态估计
人脸姿态估计,即如何通过图像中2D人脸关键点计算出头部姿态角,具体就是计算出俯仰角(pitch),偏航角(yaw)和翻滚角(roll);
计算姿态需要的若干数据:
1,2D关键点坐标
首先,你需要拿到2D人脸关键点坐标,通过dlib的人脸关键点检测器可以很容易的计算出人脸68个关键点的位置(https://www.learnopencv.com/head-pose-estimation-using-opencv-and-dlib/)。但是在具体计算头部姿态的时候可以选择性的使用这68个关键点。我看网上大量的文章都是摘取的其中6个关键点(如下图)。我分别试验了6点、14点以及68点这三种情形。
2,通用模型中关键点对应的3D坐标
从上一步计算出的人脸关键点中选出N(例如:6)个,但因为这N个点只是2D坐标,你还要想办法计算出他们对应的3D坐标。你或许会想,这一步是不是需要图像中的人脸的3D模型?只能说理论上是这样的,而实际应用过程中,一个通用的3D模型就可以满足了,更近一步,你只需要知道通用模型中关键点对应的3D坐标位置就可以干活了,例如:
鼻尖: ( 0.0, 0.0, 0.0)
下额 : ( 0.0, -330.0, -65.0)
左眼角 : (-225.0f, 170.0f, -135.0)
右眼角:( 225.0, 170.0, -135.0)
左嘴角:-150.0, -150.0, -125.0)
右嘴角:(150.0, -150.0, -125.0)
3、摄像机的内部参数
进行相机参数估计时首先需要对相机进行标定,精确的相机标定需要使用张正友的棋盘格标定,这里还是进行近似。相机的内参数矩阵需要设定相机的焦距、图像的中心位置并且假设不存在径向畸变。这里设置相机焦距为图像的宽度(以像素为单位),图像中心位置为(image.width/2,image.height/2).
实测
1、人脸关键点
关键点的获取由dlib来实现,其中需要用到官方预训练好的模型,地址如下:
http://sourceforge.net/projects/dclib/files/dlib/v18.10/shape_predictor_68_face_landmarks.dat.bz2
具体实现可以参考以下代码:
#!/usr/bin/env python # coding: utf-8 import dlib import cv2 import matplotlib.pyplot as plt import numpy as np detector = dlib.get_frontal_face_detector() #加载dlib自带的人脸检测器 pic_path = "1033.jpg" img = cv2.imread(pic_path) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) #opencv读到的是BGR的矩阵 faces = detector(img, 1) #检测人脸,返回检出的人脸框,可能有多张 r = faces[0] #只取第一张脸 x0,y0,x1,y1 = r.left(),r.top(),r.right(),r.bottom() cv2.rectangle(img, (x0,y0), (x1,y1), (255,0,0), 2) #画个人脸框框 predictor = dlib.shape_predictor('shape_predictor_68_face_landmarks.dat') #加载关键点检测模型 ldmk = predictor(img, face) #对指定的人脸进行特征点检测 points_68 = np.matrix([[p.x, p.y] for p in ldmk.parts()]) for _, p in enumerate(points_68): pos = (p[0,0], p[0,1]) cv2.circle(img, pos, 2, (0,255,255), -1, 8)
plt.imshow(img)
2、头部姿态计算
【参考文献】
https://blog.csdn.net/yuanlulu/article/details/82763170
https://zhuanlan.zhihu.com/p/51208197
https://www.learnopencv.com/head-pose-estimation-using-opencv-and-dlib/
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import print_function import os import cv2 import sys import numpy as np import math class PoseEstimator: """Estimate head pose according to the facial landmarks""" def __init__(self, img_size=(480, 640)): self.size = img_size # 3D model points. self.model_points_6 = np.array([ (0.0, 0.0, 0.0), # Nose tip (0.0, -330.0, -65.0), # Chin (-225.0, 170.0, -135.0), # Left eye left corner (225.0, 170.0, -135.0), # Right eye right corne (-150.0, -150.0, -125.0), # Left Mouth corner (150.0, -150.0, -125.0) # Right mouth corner ], dtype=float) / 4.5 self.model_points_14 = np.array([ (6.825897, 6.760612, 4.402142), (1.330353, 7.122144, 6.903745), (-1.330353, 7.122144, 6.903745), (-6.825897, 6.760612, 4.402142), (5.311432, 5.485328, 3.987654), (1.789930, 5.393625, 4.413414), (-1.789930, 5.393625, 4.413414), (-5.311432, 5.485328, 3.987654), (2.005628, 1.409845, 6.165652), (-2.005628, 1.409845, 6.165652), (2.774015, -2.080775, 5.048531), (-2.774015, -2.080775, 5.048531), (0.000000, -3.116408, 6.097667), (0.000000, -7.415691, 4.070434)], dtype=float) self.model_points_68 = np.array([ [-73.393523, -29.801432, -47.667532], [-72.775014, -10.949766, -45.909403], [-70.533638, 7.929818, -44.84258 ], [-66.850058, 26.07428 , -43.141114], [-59.790187, 42.56439 , -38.635298], [-48.368973, 56.48108 , -30.750622], [-34.121101, 67.246992, -18.456453], [-17.875411, 75.056892, -3.609035], [ 0.098749, 77.061286, 0.881698], [ 17.477031, 74.758448, -5.181201], [ 32.648966, 66.929021, -19.176563], [ 46.372358, 56.311389, -30.77057 ], [ 57.34348 , 42.419126, -37.628629], [ 64.388482, 25.45588 , -40.886309], [ 68.212038, 6.990805, -42.281449], [ 70.486405, -11.666193, -44.142567], [ 71.375822, -30.365191, -47.140426], [-61.119406, -49.361602, -14.254422], [-51.287588, -58.769795, -7.268147], [-37.8048 , -61.996155, -0.442051], [-24.022754, -61.033399, 6.606501], [-11.635713, -56.686759, 11.967398], [ 12.056636, -57.391033, 12.051204], [ 25.106256, -61.902186, 7.315098], [ 38.338588, -62.777713, 1.022953], [ 51.191007, -59.302347, -5.349435], [ 60.053851, -50.190255, -11.615746], [ 0.65394 , -42.19379 , 13.380835], [ 0.804809, -30.993721, 21.150853], [ 0.992204, -19.944596, 29.284036], [ 1.226783, -8.414541, 36.94806 ], [-14.772472, 2.598255, 20.132003], [ -7.180239, 4.751589, 23.536684], [ 0.55592 , 6.5629 , 25.944448], [ 8.272499, 4.661005, 23.695741], [ 15.214351, 2.643046, 20.858157], [-46.04729 , -37.471411, -7.037989], [-37.674688, -42.73051 , -3.021217], [-27.883856, -42.711517, -1.353629], [-19.648268, -36.754742, 0.111088], [-28.272965, -35.134493, 0.147273], [-38.082418, -34.919043, -1.476612], [ 19.265868, -37.032306, 0.665746], [ 27.894191, -43.342445, -0.24766 ], [ 37.437529, -43.110822, -1.696435], [ 45.170805, -38.086515, -4.894163], [ 38.196454, -35.532024, -0.282961], [ 28.764989, -35.484289, 1.172675], [-28.916267, 28.612716, 2.24031 ], [-17.533194, 22.172187, 15.934335], [ -6.68459 , 19.029051, 22.611355], [ 0.381001, 20.721118, 23.748437], [ 8.375443, 19.03546 , 22.721995], [ 18.876618, 22.394109, 15.610679], [ 28.794412, 28.079924, 3.217393], [ 19.057574, 36.298248, 14.987997], [ 8.956375, 39.634575, 22.554245], [ 0.381549, 40.395647, 23.591626], [ -7.428895, 39.836405, 22.406106], [-18.160634, 36.677899, 15.121907], [-24.37749 , 28.677771, 4.785684], [ -6.897633, 25.475976, 20.893742], [ 0.340663, 26.014269, 22.220479], [ 8.444722, 25.326198, 21.02552 ], [ 24.474473, 28.323008, 5.712776], [ 8.449166, 30.596216, 20.671489], [ 0.205322, 31.408738, 21.90367 ], [ -7.198266, 30.844876, 20.328022]]) self.focal_length = self.size[1] self.camera_center = (self.size[1] / 2, self.size[0] / 2) self.camera_matrix = np.array( [[self.focal_length, 0, self.camera_center[0]], [0, self.focal_length, self.camera_center[1]], [0, 0, 1]], dtype="double") # Assuming no lens distortion self.dist_coeefs = np.zeros((4, 1)) # Rotation vector and translation vector,It is unknown self.r_vec = np.array([[0.01891013], [0.08560084], [-3.14392813]]) self.t_vec = np.array([[-14.97821226], [-10.62040383], [-2053.03596872]]) def get_euler_angle(self, rotation_vector): # calc rotation angles theta = cv2.norm(rotation_vector, cv2.NORM_L2) # transform to quaterniond w = math.cos(theta / 2) x = math.sin(theta / 2)*rotation_vector[0][0] / theta y = math.sin(theta / 2)*rotation_vector[1][0] / theta z = math.sin(theta / 2)*rotation_vector[2][0] / theta # pitch (x-axis rotation) t0 = 2.0 * (w*x + y*z) t1 = 1.0 - 2.0*(x**2 + y**2) pitch = math.atan2(t0, t1) # yaw (y-axis rotation) t2 = 2.0 * (w*y - z*x) if t2 > 1.0: t2 = 1.0 if t2 < -1.0: t2 = -1.0 yaw = math.asin(t2) # roll (z-axis rotation) t3 = 2.0 * (w*z + x*y) t4 = 1.0 - 2.0*(y**2 + z**2) roll = math.atan2(t3, t4) return pitch, yaw, roll def solve_pose_by_6_points(self, image_points): """ Solve pose from image points Return (rotation_vector, translation_vector) as pose. """ points_6 = np.float32([ image_points[30], image_points[36], image_points[45], image_points[48], image_points[54], image_points[8]]) _, rotation_vector, translation_vector = cv2.solvePnP( self.model_points_6, points_6, self.camera_matrix, self.dist_coeefs, rvec=self.r_vec, tvec=self.t_vec, useExtrinsicGuess=True) return rotation_vector, translation_vector def solve_pose_by_14_points(self, image_points): points_14 = np.float32([ image_points[17], image_points[21], image_points[22], image_points[26], image_points[36], image_points[39], image_points[42], image_points[45], image_points[31], image_points[35], image_points[48], image_points[54], image_points[57], image_points[8]]) _, rotation_vector, translation_vector = cv2.solvePnP( self.model_points_14, points_14, self.camera_matrix, self.dist_coeefs, rvec=self.r_vec, tvec=self.t_vec, useExtrinsicGuess=True) return rotation_vector, translation_vector def solve_pose_by_68_points(self, image_points): _, rotation_vector, translation_vector = cv2.solvePnP( self.model_points_68, image_points, self.camera_matrix, self.dist_coeefs, rvec=self.r_vec, tvec=self.t_vec, useExtrinsicGuess=True) return rotation_vector, translation_vector def draw_annotation_box(self, image, rotation_vector, translation_vector, color=(255, 255, 255), line_width=2): """Draw a 3D box as annotation of pose""" point_3d = [] rear_size = 75 rear_depth = 0 point_3d.append((-rear_size, -rear_size, rear_depth)) point_3d.append((-rear_size, rear_size, rear_depth)) point_3d.append((rear_size, rear_size, rear_depth)) point_3d.append((rear_size, -rear_size, rear_depth)) point_3d.append((-rear_size, -rear_size, rear_depth)) front_size = 100 front_depth = 100 point_3d.append((-front_size, -front_size, front_depth)) point_3d.append((-front_size, front_size, front_depth)) point_3d.append((front_size, front_size, front_depth)) point_3d.append((front_size, -front_size, front_depth)) point_3d.append((-front_size, -front_size, front_depth)) point_3d = np.array(point_3d, dtype=np.float).reshape(-1, 3) # Map to 2d image points (point_2d, _) = cv2.projectPoints(point_3d, rotation_vector, translation_vector, self.camera_matrix, self.dist_coeefs) point_2d = np.int32(point_2d.reshape(-1, 2)) # Draw all the lines cv2.polylines(image, [point_2d], True, color, line_width, cv2.LINE_AA) cv2.line(image, tuple(point_2d[1]), tuple( point_2d[6]), color, line_width, cv2.LINE_AA) cv2.line(image, tuple(point_2d[2]), tuple( point_2d[7]), color, line_width, cv2.LINE_AA) cv2.line(image, tuple(point_2d[3]), tuple( point_2d[8]), color, line_width, cv2.LINE_AA) def run(pic_path): points_68 = load_anno(pic_path) #加载68个人脸特征点,自行实现 img = cv2.imread(pic_path) pose_estimator = PoseEstimator(img_size=img.shape) #pose = pose_estimator.solve_pose_by_6_points(points_68) #pose = pose_estimator.solve_pose_by_14_points(points_68) #pose = pose_estimator.solve_pose_by_68_points(points_68) pitch, yaw, roll = pose_estimator.get_euler_angle(pose[0]) def _radian2angle(r): return (r/math.pi)*180 Y, X, Z = map(_radian2angle, [pitch, yaw, roll]) line = 'Y:{:.1f} X:{:.1f} Z:{:.1f}'.format(Y,X,Z) print('{},{}'.format(os.path.basename(pic_path), line.replace(' ',','))) y = 20 for _, txt in enumerate(line.split(' ')): cv2.putText(img, txt, (20, y), cv2.FONT_HERSHEY_PLAIN, 1.3, (0,0,255), 1) y = y + 15 for p in points_68: cv2.circle(img, (int(p[0]),int(p[1])), 2, (0,255,0), -1, 0) cv2.imshow('img', img) if cv2.waitKey(-1) == 27: pass return 0 if __name__ == "__main__": if len(sys.argv) != 2: print("%(prog)s IMAGE_PATH") sys.exit(-1) sys.exit(run(sys.argv[1]))