• 【模板】线段树


    已知一个数列,你需要进行下面两种操作:
    1.将某区间每一个数加上x
    2.求出某区间每一个数的和

    #include<bits/stdc++.h>
    
    using namespace std;
    
    typedef long long ll;
    const int N = 100010;
    
    int n, m;
    ll a[N];
    struct node{
        ll val, lazy;
    }seg[N<<2];
    
    void pushdown(int o, int l, int r){
        if(seg[o].lazy){
            seg[o<<1].lazy += seg[o].lazy;
            seg[o<<1|1].lazy += seg[o].lazy;
            int mid = (l + r) >> 1;
            seg[o<<1].val += seg[o].lazy*(mid-l+1);
            seg[o<<1|1].val += seg[o].lazy*(r-mid);
            seg[o].lazy = 0;
        }
    }
    
    void build(int o, int l, int r){
        seg[o].lazy = 0ll;
        if(l == r){
            seg[o].val = a[l];
            return;
        }
        int mid = (l+r)>>1;
        build(o<<1, l, mid);
        build(o<<1|1, mid+1, r);
        seg[o].val = seg[o<<1].val + seg[o<<1|1].val;
    }
    
    void modify(int o, int be, int en, int l, int r, ll add){
        if(be >= l && r >= en){
            seg[o].val += add*(en-be+1);
            seg[o].lazy += add;
            return;
        }    
    
        pushdown(o, be, en);
        int mid = (be+en)>>1;
        if(l <= mid) modify(o<<1, be, mid, l, r, add);
        if(r > mid) modify(o<<1|1, mid+1, en, l, r, add);
        seg[o].val = seg[o<<1].val + seg[o<<1|1].val;
    }
    
    ll query(int o, int be, int en, int l, int r){
        if(l <= be && en <= r){
            return seg[o].val;
        }
    
        pushdown(o, be, en);
        int mid = (be+en)>>1;
        ll s = 0;
        if(l <= mid) s += query(o<<1, be, mid, l, r);
        if(r > mid) s += query(o<<1|1, mid+1, en, l, r);
        return s;
    }
    
    int main(){
        int cs, x, y;
        ll k;
    
        scanf("%d%d", &n, &m);
        for(int i = 1; i <= n; i++) scanf("%lld", &a[i]);
    
        build(1, 1, n);
    
    
        for(int i = 1; i <= m; i++){
            scanf("%d", &cs);
            if(cs == 1){
                scanf("%d%d%lld", &x, &y, &k);
                modify(1, 1, n, x, y, k);
            }
            else{
                scanf("%d%d", &x, &y);
                printf("%lld\n", query(1, 1, n, x, y));
            }
        }
    
        return 0;
    }
    

    已知一个数列,你需要进行下面两种操作:
    1.将某区间每一个数乘上x
    2.将某区间每一个数加上x
    3.求出某区间每一个数的和

    #include<bits/stdc++.h>
    
    using namespace std;
    
    typedef long long ll;
    const int N = 100010;
    
    int n, m;
    ll p;
    ll a[N];
    struct node{
        ll val;
        ll lazy1, lazy2;
    }seg[N<<2];
    
    template <typename T>
    T read(){
        T N(0), F(1);
        char C = getchar();
        for(; !isdigit(C); C = getchar()) if(C == '-') F = -1;
        for(; isdigit(C); C = getchar()) N = N*10 + C-48;
        return N*F;
    }
    
    void pushdown1(int o, int l, int r){
        if(seg[o].lazy2 != 1){//这里传lazy的顺序不能变,我不知道为什么
            seg[o<<1].lazy1 = seg[o<<1].lazy1 * seg[o].lazy2%p;
            seg[o<<1|1].lazy1 = seg[o<<1|1].lazy1 * seg[o].lazy2%p;
            seg[o<<1].lazy2 = seg[o<<1].lazy2 * seg[o].lazy2%p;
            seg[o<<1|1].lazy2 = seg[o<<1|1].lazy2 * seg[o].lazy2%p;
            seg[o<<1].val = seg[o<<1].val * seg[o].lazy2%p;
            seg[o<<1|1].val = seg[o<<1|1].val * seg[o].lazy2%p;
            seg[o].lazy2 = 1;
        }
        if(seg[o].lazy1){
            seg[o<<1].lazy1 = (seg[o<<1].lazy1 + seg[o].lazy1)%p;
            seg[o<<1|1].lazy1 =(seg[o<<1|1].lazy1 + seg[o].lazy1)%p;
            int mid = (l + r) >> 1;
            seg[o<<1].val = (seg[o<<1].val + seg[o].lazy1*(mid-l+1)%p)%p;
            seg[o<<1|1].val = (seg[o<<1|1].val + seg[o].lazy1*(r-mid)%p)%p;
            seg[o].lazy1 = 0;
        }
    }
    
    void build(int o, int l, int r){
        seg[o].lazy1 = 0ll; seg[o].lazy2 = 1ll;
        if(l == r){
            seg[o].val = a[l]%p;
            return;
        }
        int mid = (l+r)>>1;
        build(o<<1, l, mid);
        build(o<<1|1, mid+1, r);
        seg[o].val = (seg[o<<1].val + seg[o<<1|1].val)%p;
    }
    
    void update(int o, int be, int en, int l, int r, ll add){
        if(en < l || r < be) return;
        if(be >= l && r >= en){
            seg[o].val = seg[o].val * add%p;
            seg[o].lazy1 = seg[o].lazy1 * add%p;
            seg[o].lazy2 = seg[o].lazy2 * add%p;
            return;
        }
        pushdown1(o, be, en);
        int mid = (be + en)>>1;
    
        if(l <= mid) update(o<<1, be, mid, l, r, add);
        if(r > mid) update(o<<1|1, mid+1, en, l, r, add);
        seg[o].val = (seg[o<<1].val + seg[o<<1|1].val)%p;
    }
    
    void modify(int o, int be, int en, int l, int r, ll add){
        if(en < l || r < be) return;
        if(be >= l && r >= en){
            seg[o].val = (seg[o].val + add*(en-be+1))%p;
            seg[o].lazy1 = (seg[o].lazy1 + add)%p;
            return;
        }    
    
        pushdown1(o, be, en);
        int mid = (be+en)>>1;
        modify(o<<1, be, mid, l, r, add);
        modify(o<<1|1, mid+1, en, l, r, add);
        seg[o].val = (seg[o<<1].val + seg[o<<1|1].val)%p;
    }
    
    ll query(int o, int be, int en, int l, int r){
        if(en < l || r < be) return 0;
        if(l <= be && en <= r){
            return seg[o].val%p;
        }
    
        pushdown1(o, be, en);
        int mid = (be+en)>>1;
        ll s = 0;
        s = (s + query(o<<1, be, mid, l, r))%p;
        s = (s + query(o<<1|1, mid+1, en, l, r))%p;
        seg[o].val = (seg[o<<1].val + seg[o<<1|1].val)%p;
        return s%p;
    }
    
    int main(){
        int cs, x, y;
        ll k;
    
        n = read<int>(); m = read<int>(); p = read<ll>();
        for(int i = 1; i <= n; i++) a[i] = read<ll>();
    
        build(1, 1, n);
    
        for(int i = 1; i <= m; i++){
            cs = read<int>();
            if(cs == 1){
                x = read<int>(); y = read<int>(); k = read<ll>();
                update(1, 1, n, x, y, k);
            }
            else if(cs == 2){
                x = read<int>(); y = read<int>(); k = read<ll>();
                modify(1, 1, n, x, y, k);
            }
            else if(cs == 3){
                x = read<int>(); y = read<int>();
                printf("%lld\n", query(1, 1, n, x, y)%p);
            }
        }
    
        return 0;
    }
    
  • 相关阅读:
    javascript面向对象(三)--继承
    javascript面向对象(一)
    jsp/servlet学习笔记(核心编程)mysql部分
    jsp/servlet学习笔记(核心编程)servlet部分
    没有为扩展名“.html”注册的生成提供程序
    vs2012 mvc3项目ObjectContext与DBContext(转载)
    反射与动态代理
    spring-ioc

    哈希表
  • 原文地址:https://www.cnblogs.com/hanser/p/7684997.html
Copyright © 2020-2023  润新知