https://www.runoob.com/pandas/pandas-tutorial.html
Pandas 教程
Pandas 是 Python 语言的一个扩展程序库,用于数据分析。
Pandas 是一个开放源码、BSD 许可的库,提供高性能、易于使用的数据结构和数据分析工具。
Pandas 名字衍生自术语 "panel data"(面板数据)和 "Python data analysis"(Python 数据分析)。
Pandas 一个强大的分析结构化数据的工具集,基础是 Numpy(提供高性能的矩阵运算)。
Pandas 可以从各种文件格式比如 CSV、JSON、SQL、Microsoft Excel 导入数据。
Pandas 可以对各种数据进行运算操作,比如归并、再成形、选择,还有数据清洗和数据加工特征。
Pandas 广泛应用在学术、金融、统计学等各个数据分析领域。
Pandas 应用
Pandas 的主要数据结构是 Series (一维数据)与 DataFrame(二维数据),这两种数据结构足以处理金融、统计、社会科学、工程等领域里的大多数典型用例。
数据结构
Series 是一种类似于一维数组的对象,它由一组数据(各种Numpy数据类型)以及一组与之相关的数据标签(即索引)组成。
DataFrame 是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔型值)。DataFrame 既有行索引也有列索引,它可以被看做由 Series 组成的字典(共同用一个索引)。
Pandas 安装
安装 pandas 需要基础环境是 Python,开始前我们假定你已经安装了 Python 和 Pip。
使用 pip 安装 pandas:
pip install pandas
安装成功后,我们就可以导入 pandas 包使用:
import pandas
实例 - 查看 pandas 版本
>>> pandas.__version__ # 查看版本
'1.1.5'
导入 pandas 一般使用别名 pd 来代替:
import pandas as pd
实例 - 查看 pandas 版本
>>> pd.__version__ # 查看版本
'1.1.5'
Pandas 数据结构 - Series
Pandas Series 类似表格中的一个列(column),类似于一维数组,可以保存任何数据类型。
Series 由索引(index)和列组成,函数如下:
pandas.Series( data, index, dtype, name, copy)
参数说明:
-
data:一组数据(ndarray 类型)。
-
index:数据索引标签,如果不指定,默认从 0 开始。
-
dtype:数据类型,默认会自己判断。
-
name:设置名称。
-
copy:拷贝数据,默认为 False。
创建一个简单的 Series 实例:
实例
a = [1, 2, 3]
myvar = pd.Series(a)
print(myvar)
输出结果如下:
从上图可知,如果没有指定索引,索引值就从 0 开始,我们可以根据索引值读取数据:
实例
a = [1, 2, 3]
myvar = pd.Series(a)
print(myvar[1])
输出结果如下:
2
我们可以指定索引值,如下实例:
实例
a = ["Google", "Runoob", "Wiki"]
myvar = pd.Series(a, index = ["x", "y", "z"])
print(myvar)
输出结果如下:
根据索引值读取数据:
Pandas 数据结构 - DataFrame
DataFrame 是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔型值)。DataFrame 既有行索引也有列索引,它可以被看做由 Series 组成的字典(共同用一个索引)。
DataFrame 构造方法如下:
pandas.DataFrame( data, index, columns, dtype, copy)
参数说明:
-
data:一组数据(ndarray、series, map, lists, dict 等类型)。
-
index:索引值,或者可以称为行标签。
-
columns:列标签,默认为 RangeIndex (0, 1, 2, …, n) 。
-
dtype:数据类型。
-
copy:拷贝数据,默认为 False。
Pandas DataFrame 是一个二维的数组结构,类似二维数组。
实例 - 使用列表创建
data = [['Google',10],['Runoob',12],['Wiki',13]]
df = pd.DataFrame(data,columns=['Site','Age'],dtype=float)
print(df)
输出结果如下:
以下实例使用 ndarrays 创建,ndarray 的长度必须相同, 如果传递了 index,则索引的长度应等于数组的长度。如果没有传递索引,则默认情况下,索引将是range(n),其中n是数组长度。
ndarrays 可以参考:NumPy Ndarray 对象
实例 - 使用 ndarrays 创建
data = {'Site':['Google', 'Runoob', 'Wiki'], 'Age':[10, 12, 13]}
df = pd.DataFrame(data)
print (df)
输出结果如下:
从以上输出结果可以知道, DataFrame 数据类型一个表格,包含 rows(行) 和 columns(列):
Pandas CSV 文件
CSV(Comma-Separated Values,逗号分隔值,有时也称为字符分隔值,因为分隔字符也可以不是逗号),其文件以纯文本形式存储表格数据(数字和文本)。
CSV 是一种通用的、相对简单的文件格式,被用户、商业和科学广泛应用。
Pandas 可以很方便的处理 CSV 文件,本文以 nba.csv 为例,你可以下载 nba.csv 或打开 nba.csv 查看。
实例
df = pd.read_csv('nba.csv')
print(df.to_string())
to_string() 用于返回 DataFrame 类型的数据,如果不使用该函数,则输出结果为数据的前面 5 行和末尾 5 行,中间部分以 ... 代替。
实例
df = pd.read_csv('nba.csv')
print(df)
输出结果为:
Name Team Number Position Age Height Weight College Salary
0 Avery Bradley Boston Celtics 0.0 PG 25.0 6-2 180.0 Texas 7730337.0
1 Jae Crowder Boston Celtics 99.0 SF 25.0 6-6 235.0 Marquette 6796117.0
2 John Holland Boston Celtics 30.0 SG 27.0 6-5 205.0 Boston University NaN
3 R.J. Hunter Boston Celtics 28.0 SG 22.0 6-5 185.0 Georgia State 1148640.0
4 Jonas Jerebko Boston Celtics 8.0 PF 29.0 6-10 231.0 NaN 5000000.0
.. ... ... ... ... ... ... ... ... ...
453 Shelvin Mack Utah Jazz 8.0 PG 26.0 6-3 203.0 Butler 2433333.0
454 Raul Neto Utah Jazz 25.0 PG 24.0 6-1 179.0 NaN 900000.0
455 Tibor Pleiss Utah Jazz 21.0 C 26.0 7-3 256.0 NaN 2900000.0
456 Jeff Withey Utah Jazz