• MATLAB数学实验总结


    L1 MATLAB 基础知识

    #####P6 表1-3 数据显示格式 format rat format long #####P20 表2-5 常用的矩阵函数 zeros(m,n) %零阵 eye(n) %单位阵 ones(m,n) %全一阵 diag(v,k) %k=0,v为行矩阵时生成对角阵如 diag([3 4 5]),v为一般矩阵时取对角元素成列矩阵 rand(m,n) %随机阵 #####P24 表2-6 常用函数命令,该页上有矩阵运算规则 exp(x) %(e^x) abs(x) %(|x|) sqrt(x) %(sqrt{x}) log(x) %(lnx) #####:操作符 j:k %[j,j+1,j+2,…,k] 步长为1的等差数列 j:i:k %[j,j+i,j+2*i,…,k]步长为i的等差数列 #####矩阵的操作 A(i,j) %取矩阵A的第i行第j列元素 A(i) %取矩阵A的第i个元素 A(i:j) %A(i),A(i+1),…,A(j) A(i,:) %A取矩阵的第i行 A(:,j) %取矩阵A的第j列 #####for循环

    for i=from:step:to
    ……
    end
    

    #####if语句

    if something
    	do sth
    elseif something
    	do sth
    ……
    else
    	do sth
    end
    

    #####交互语句 a=input('请输入') a=input('请输入','s')

    ####作业:P16 第4题, P27第2题 1、求$sum_^n k!$

    function s=JCH(k)
    if(k<0) disp('输入参数的值不合法');
    elseif(k==0) s=1;
    else
        su = 0;
        for i = 1 : 1 : k
            jiecheng = 1;
            for j = 1 : 1 : i
                jiecheng = jiecheng * j ; %内循环求阶乘
            end
            su = jiecheng + su ;  %外循环求和
        end
    s = su ;
    end
    end
    

    2、矩阵的*与 .* 运算 略

    ###L2 MATLAB 绘图 #####二维绘图 plot(y) plot(x,y) plot(x1,y1,x2,y2,x3,y3…) plot(x1,y1,’ String1’,x2,y2,’ String2’,…) %P44 表4-1、表4-2、表4-3 subplot(m,n,i) subplot('position',[left bottom width height]) %各参数在0~1之间取值 #####图形标注 title('string') xlabel('string') ylabel('string') zlabel('string') gtext('string') %鼠标定位标注 legend('string1','string2','string3') %图例标注 #####三维曲线绘图 plot3(X,Y,Z) plot3(X,Y,Z,’String’) plot3(X1,Y1,Z1,’ String1’,X2,Y2,Z2,’ String2’,…)

    ####作业:p79 1,3,5 例:画出函数 $ y = sin^2 x (在)-5 le x le 5 $ 的图形。

    x=-5:0.1:5;
    y=sin(x.^2); 
    plot(x,y),grid on		%网格线
    

    1、绘制$y=e^{frac{pi}{3}}sin(3x),x in [0,4pi]$,要求蓝色星号画图,红点划线画包络线 (y=pm e^{frac{x}{3}})

    clear;
    clf;
    x = 0 : pi/50 : 4*pi ;
    y = exp(x/3).*sin(3*x);
    y1 = exp(x/3);
    y2 = - y1;
    plot(x,y,'b*',x,y1,'r-.',x,y2,'r-.')
    

    3、同一窗口画三个子图,要求用指令:gtext axis legend title xlabel ylabel:

    clear;
    clf;
    
    x1 = -pi : pi/50 : pi ;
    x2 = pi : pi/100 : 4*pi ;
    x3 = 1 : 0.1 : 8 ;
    y1 = x1 .* cos(x1) ;
    y2 = x2 .* tan(1 ./ x2) .* sin(x2.^3) ;
    y3 = exp(1 ./ x3) .* sin(x3);
    subplot(2,2,1) , plot(x1,y1),grid on;
    axis on;		%恢复消隐坐标轴 ; 
    axis equal;		%使坐标轴在三个方向上刻度增量相同
    legend('y1 = x1*cos(x1)');
    title('曲线y1 = x1*cos(x1)')
    xlabel('x1');ylabel('y1');
    gtext('y1 = x1*cos(x1) ');
    
    subplot('position',[0.15,0.15,0.75,0.3]) , plot(x2,y2),grid on;
    axis on ;
    legend('y2 = x2*tan(1/x2)*sin(x2^3)');
    title('曲线y2 = x2*tan(1/x2)*sin(x2^3)')
    xlabel('x2');ylabel('y2');
    gtext('y2 = x2*tan(1/x2)*sin(x2^3) ');
    
    subplot(2,2,2) , plot(x3,y3),grid on;
    axis on ; axis equal;
    legend('y3 = exp(1/x3)*sin(x3)');
    title('曲线y3 = exp(1/x3)*sin(x3)')
    xlabel('x3');ylabel('y3');
    gtext('y3 = exp(1/x3)*sin(x3)');
    

    结果: img

    5、绘制圆锥螺线的图像并加以标注,给出了参数方程:

    clear
    clf
    
    t= 0 : pi/10 : 20*pi ;
    x= t .* cos(pi/6*t);
    y= t .* sin(pi/6*t);
    z= 2*t;
    plot3(x,y,z);
    title('圆锥螺线的图像');
    xlabel('x轴');
    ylabel('y轴');
    zlabel('z轴');
    legend('圆锥螺线');
    grid on;
    axis square;		%使坐标轴在三个方向上长度相同
    

    ###L3 MATLAB 三维曲面绘图 #####网格绘图 网格图:线条有颜色,空挡没有颜色 [x,y]=meshgrid(x,y) %生成的X、Y都是y*x维的矩阵(生成二维网格) [X,Y]=meshgrid(x) %等价于meshgrid(x,x) [X Y Z]=meshgrid(x,y,z) [X,Y,Z]=meshgrid(x) %等价于meshgrid(x,x,x) mesh(X,Y,Z) %X,Y,Z为空间坐标矩阵 #####表面绘图 曲面图:线条是黑色,空挡有颜色(把线条之间的空挡填充颜色,沿z轴按每一网格变化) surf(X,Y,Z) #####三维图形控制命令 view(az,el) %az为水平方位角,从y轴负方向开始,逆时针旋转为正;el为垂直方位角,以向z轴方向旋转为正。三维默认视角为az=-37.5, el=30 1525527886681 view([x,y,z]) %笛卡尔坐标系下的视角,忽略向量的幅值 rotate(h,direction,alpha,orgin) %h---表示被旋转的对象;direction--方向轴:可用球坐标[theta,phi]或直角坐标[x,y,z];alpha---按右手法旋转的角度;orgin---支点 1525527914874 rotate3d %动态旋转命令,可以让用户使用鼠标来旋转视角 ####作业:p79 7,8,9 例1:分别用mesh surf绘制$z=xe^{-(x2+y2)},-2le x,yle 2$。

    t=-2:0.1:2;
    [x,y]=meshgrid(t);
    z=x.*exp(-x.^2-y.^2);
    subplot(1,2,1),mesh(x,y,z),title('网格图')
    subplot(1,2,2),surf(x,y,z),title('表面图')
    

    例2:用平行截面法讨论由方程构成的马鞍面形状。

    t=-10:0.1:10;
    [x,y]=meshgrid(t);
    z1=(x.^2-2*y.^2)+eps;		%eps是matlab中最小的正数,eps=2.22044604925031e-016
    subplot(1,3,1),mesh(x,y,z1),title('马鞍面')
    
    a=input('a=(-50<a<50)'),
    z2=a*ones(size(x));
    subplot(1,3,2),mesh(x,y,z2),title('平面')
    
    r0=abs(z1-z2)<=1;
    zz=r0.*z2;yy=r0.*y;xx=r0.*x;
    subplot(1,3,3),plot3(xx(r0~=0),yy(r0~=0),zz(r0~=0),'o')
    title('交线')
    

    结果(输入a=20): 1525529080431

    7、用mesh surf 分别画图:

    clear
    clf
    clc
    
    t = -1 : 0.1 : 1;
    [x,y] = meshgrid(t);
    z = x.^2 + 3*y.^2;
    subplot(1,2,1),
    mesh(x,y,z);
    subplot(1,2,2),
    surf(x,y,z);
    

    8、画立体图$frac{x2}{9}+frac{y2}{16}+frac{z^2}{4}=1$在各个坐标平面上的投影:

    clear
    clf
    clc
    
    [xx,yy,zz] = sphere(30);		%绘制单位球面并给与xx,yy,zz的返回值成矩阵
    x = 1/3*xx;y = 1/4*yy;z = 1/2*zz;
    subplot(2,2,1);surf(x,y,z);
    subplot(2,2,2);surf(x,y,z);view([1,0,0])
    subplot(2,2,3);surf(x,y,z);view([0,1,0])
    subplot(2,2,4);surf(x,y,z);view([0,0,1])
    

    9、画三维曲面$z=5-x2-y2,-2le x,y le 2$与平面$z=3$的交线:

    clear
    clf
    clc
    
    t = -2 : 0.1 : 2;
    [x,y] = meshgrid(t);
    z1 = 5 - x.^2 - y.^2;
    subplot(1,3,1),mesh(x,y,z1);
    
    z2 = 3*ones(size(x));
    subplot(1,3,2),mesh(x,y,z2);
    
    r0 = (z1 - z2) == 0;
    zz = r0.*z1;		%最好写z2,原因看例题中的abs()
    yy = r0.*y;
    xx = r0.*x;
    subplot(1,3,3),plot3(xx(r0~=0),yy(r0~=0),zz(r0~=0),'*')
    

    ###L4 线性代数与数值积分 #####矩阵的基本运算,更多请看P82 表5-1 矩阵的基本运算 k*A %数乘,k是一个数,A是一个矩阵 A/B %矩阵的左除,AX=B, X=A-1B, A必须是方阵 AB %矩阵的右除,XB=A,X=AB-1, B必须是方阵 det(A) %矩阵的行列式,A必须为方阵 inv(A) %矩阵的逆,A必须为方阵且|A|$ e$0 An %矩阵的乘幂,A必须为方阵,n是正整数 rref(A) %矩阵行变换化简,求A阶梯形的行最简形式 #####矩阵的特征值、特征向量、特征多项式 [V,D]=eig(A) %V是方阵A的特征向量矩阵,D是方阵A的特征值矩阵 p=poly(A) %若A为矩阵,则p为A的特征多项式系数;若A为行向量,则p为以A为根的特征多项式系数。 poly2str(p,’x’) %得到多项式的习惯形式 #####用数值方法计算定积分 1、 矩形法 例1:计算定积分$int_01 frac{4}{1+x^2}dx$, 并于精确值$pi$比较

    h=0.01;x=0:h:1;
    y=4./(1+x.^2);
    format long
    z1=sum(y(1:length(x)-1))*h     %左矩形公式
    z2=sum(y(2:length(x)))*h     %右矩形公式
    format short
    u1=z1-pi,u2=z2-pi 
    

    结果: z1 =3.151575986923129 z2 =3.131575986923129 u1 = 0.0100 u2 = -0.0100

    2、复合梯形公式 trapz(x,y) z3=trapz(x,y) 结果: z3 =3.141575986923129

    3、复合辛普生公式 quad(‘fun’,a,b,tol,trace)

    • 式中fun是被积函数表达式字符串或者是M函数文件;

    • a,b是积分的下限与上限;

    • tol代表精度,可以缺省(tol=0.001);

    • trace=1时用图形展示积分过程,省略时无图形。

      ###作业: P114 12,14 P115 21. (1),(2) P167 17. (2) 18 例1:

    A=[1,-1;2,4];
    p=poly(A)
    poly2str(p,’x’)
    

    结果: p=[1 -5 6] x^2-5x+6 补充: 1525532356455

    12、随即输入一个6阶方阵,并求转置、行列式、秩、行最简

    clear
    clc
    format rat
    a=rand(6)		%rand(n)返回一个nxn的随机矩阵,数值范围在(0,1)之间;rand(m,n)返回一个mxn的随机矩阵
    b=a'		%求转置矩阵
    c=det(a)
    d=rank(a)		%求矩阵的秩
    e=rref(a)
    

    14、求矩阵的特征多项式 特征值 特征向量

    clear
    clc
    format rat
    a=[2 1 1;1 2 1;1 1 2];
    [V,D]=eig(a)
    p=poly(a);
    poly2str(p,'x')
    

    21.(1)(2)见附件

    17.(2)->例3代替 用三种方法求积分的数值解:(int_0^1frac{sin^2}{x+1}dx)

    x=0:0.01:1;
    y=sin(x.^2)./(x+1);		%特别小心./
    s1=sum(y(1:100))*0.01
    s2=sum(y(2:101))*0.01
    s3=trapz(x,y)
    ff=inline('sin(x.^2)./(x+1)','x')	%非常重要的就是函数怎么写出来
    s4=quad(ff,0,1)
    

    结果: s1 =0.178688675864628 s2 =0.182896030788667 s3 =0.180792353326647 ff =内联函数:ff(x) = sin(x.^2)./(x+1) s4 =0.180789631475358

    关于函数的表示还可以这样 : 建立函数文件jifen.m: function y=jifen(x) y=sin(x.^2)./(x+1); 编程如下: s=quad('jifen',0,1)

    18、用多种数值方法计算定积分,并与精确值$sqrt{2}$比较,同例1,不再赘述

    ###L5 拟合与插值 #####曲线拟合 ######多项式拟合 p=polyfit(x,y,n) n次多项式数据拟合 poly2str(p,‘x’) 将多项式表示成习惯的形式 polyval(p,X) 按数组规则计算X处多项式的值 例:

    x=1:0.1:2;
    y=[2.1,3.2,2.1,2.5,3.2,3.5,3.4,4.1,4.7,5.0,4.8];
    p2=polyfit(x,y,2)     %多项式拟合,次数是2 ,p2为拟合多项式的系数
    p3=polyfit(x,y,3);
    p7=polyfit(x,y,7);
    disp(‘二次拟合函数'),f2=poly2str(p2,'x')
    disp(‘三次拟合函数'),f3=poly2str(p3,'x');
    disp(‘七次拟合函数'),f7=poly2str(p7,'x');
    
    x1=1:0.01:2;
    y2=polyval(p2,x1);     %多项式p2在x1处的值
    y3=polyval(p3,x1);
    y7=polyval(p7,x1);
    plot(x,y,'rp',x1,y2,'--',x1,y3,'k-.',x1,y7);
    

    结果: p2=1.3869 -1.2608 2.141 f2 =1.3869 x^2 - 1.2608 x + 2.141 1525535697108 #####插值 ######一维多项式插值 yi=interp1(x,y,xi,method) %当输入的x是等间距时,可在插值方法method前加*,以提高处理速度。

    • ‘nearest’:最近点插值,插值点处的值取与该插值点距离最近的数据点函数值;
    • ‘linear’:分段线性插值,用直线连接数据点,插值点的值取对应直线上的值;
    • ‘spline’:三次样条函数插值,该方法用三次样条曲线通过数据点,插值点处的值取对应曲线上的值;
    • ‘cubic’:分段三次Hermite插值,确定三次Hermite函数,根据该函数确定插值点的函数值。
    • 缺省时表示分段线性插值。 例:用以上4种方法对y=cosx在[0,6]上的一维插值效果进行比较。
    x=0:6;
    y=cos(x);
    xi=0:.25:6;
    yi1=interp1(x,y,xi,'*nearest');
    yi2=interp1(x,y,xi,'*linear');
    yi3=interp1(x,y,xi,'*spline');
    yi4=interp1(x,y,xi,'*cubic');
    plot(x,y,'ro',xi,yi1,'--',xi,yi2,'-',xi,yi3,'k.-',xi,yi4,'m:')
    legend(‘原始数据’,‘最近点插值’,‘线性插值’,’样条插值‘,’立方插值’)
    

    结果: 1525536138309 ######二维多项式插值 zi=interp2(x,y,z,xi,yi,method) 例:用以上4种方法对$z=xe^{-(x2+y2)}$在[-2,2 ]上的二维多项式插值效果进行比较。

    [x,y]=meshgrid(-2:.5:2);
    z=x.*exp(-x.^2-y.^2);
    
    [x1,y1]=meshgrid(-2:.1:2);
    z1=x1.*exp(-x1.^2-y1.^2);
     
    figure(1)
    subplot(1,2,1),mesh(x,y,z),title('数据点')
    subplot(1,2,2),mesh(x1,y1,z1),title('函数图象')
    
    [xi,yi]=meshgrid(-2:.125:2);
    zi1=interp2(x,y,z,xi,yi,'*nearest');
    zi2=interp2(x,y,z,xi,yi,'*linear');
    zi3=interp2(x,y,z,xi,yi,'*spline');
    zi4=interp2(x,y,z,xi,yi,'*cubic');
    
    figure(2)
    subplot(221),mesh(xi,yi,zi1),title('最近点插值')
    subplot(222),mesh(xi,yi,zi2),title('线性插值')
    subplot(223),mesh(xi,yi,zi3),title('样条插值')
    subplot(224),mesh(xi,yi,zi4),title('立方插值')
    

    结果: 1525536538869 1525536563242 ####作业:P130 8,10,12 8、用一次、三次、五次多项式拟合数据并画出图形。

    clear
    clc
    clf
    x=[0.1 0.3 0.4 0.55 0.7 0.8 0.95];
    y=[15 18 19 21 22.6 23.8 26];
    p1=polyfit(x,y,1);
    p3=polyfit(x,y,3);
    p5=polyfit(x,y,5);
    x1=0.1:0.01:0.95;
    y1=polyval(p1,x1);
    y3=polyval(p3,x1);
    y5=polyval(p5,x1);
    plot(x,y,'r*',x1,y1,'--',x1,y3,'m:',x1,y5)
    legend('拟合点','一次拟合','三次拟合','五次拟合')
    

    10、用不同的插值方法计算X=18和26时Y的值。

    clear
    clc
    x=10:5:30;
    y=[25.2,29.8,31.2,31.7,29.4];
    xi=10:30;
    yi1=interp1(x,y,xi,'*nearest');
    yi2=interp1(x,y,xi,'*linear');
    yi3=interp1(x,y,xi,'*spline');
    yi4=interp1(x,y,xi,'*cubic');
    plot(x,y,'ro',xi,yi1,'--',xi,yi2,'-',xi,yi3,'k.-',xi,yi4,'m:')
    legend('原始数据','最近点插值','线性插值','样条插值','立方插值')
    y18=interp1(x,y,18,'*spline')
    y26=interp1(x,y,26,'*spline')
    

    12、用不同方法对$z=frac{x2}{16}-frac{y2}{9}$在(-3,3)上的二维插值效果进行比较。

    clear
    clc
    clf
    [x,y]=meshgrid(-3:0.5:3);
    z=x.^2./16-y.^2./9;
    [x1,y1]=meshgrid(-3:0.1:3);
    z1=x1.^2./16-y1.^2./9;
    figure(1)
    subplot(1,2,1),mesh(x,y,z),title('数据点')
    subplot(1,2,2),mesh(x1,y1,z1),title('函数图象')
    [xi,yi]=meshgrid(-3:.125:3);
    zi1=interp2(x,y,z,xi,yi,'*nearest');
    zi2=interp2(x,y,z,xi,yi,'*linear');
    zi3=interp2(x,y,z,xi,yi,'*spline');
    zi4=interp2(x,y,z,xi,yi,'*cubic');
    figure(2)
    subplot(2,2,1),mesh(xi,yi,zi1),title('最近点插值')
    subplot(2,2,2),mesh(xi,yi,zi2),title('线性插值')
    subplot(2,2,3),mesh(xi,yi,zi3),title('样条插值')
    subplot(2,2,4),mesh(xi,yi,zi4),title('立方插值')
    

    ###L6 常微分方程的求解 #####符号解法 dsolve(’eqution’,’var’) dsolve(’eqution’ , ’cond1,cond2,…’ , ’var’) 例1:(frac{dy}{dx}=y^2) dsolve('Dy=y^2','x') 例2:(xy''-3y'=x^2,y(1)=0,y(5)=0) dsolve('x*D2y-3*Dy=x^2','y(1)=0,y(5)=0','x') #####数值解法 龙格库塔方法 [t,y]=ode23(‘fun’,tspan,y0) [t,y]=ode45(‘fun’,tspan,y0) 其中,fun是定义函数的文件名,该函数fun必须以dy输出量,以t,y为输入量。tspan=[t0 tf]表示积分的起始值和终止值;y0是初始状态列向量。 例3:(y'=ytant+sect,0le tle 1,y|_{t=0}=frac{pi}{2}),试求数值解,并与精确解$y(t)=frac{t+frac{pi}{2}}$比较。 分析:这个方程满足“以dy输出,t、y输入”的条件, 解:1)编写函数文件funst.m

    function yp=funst(t,y)
    yp=sec(t)+y*tant(t);
    

    2)主程序

    t0=0;tf=1;
    y0=pi/2;
    [t,y]=ode23('funst',[t0,tf],y0);
    yy=(t+pi/2)./cos(t);
    plot(t,y,'-',t,yy,'o')
    [t,y,yy]
    

    例2:用数值积分的方法求解微分方程:(y''+y=1-frac{t^2}{2pi}),设初始时间$t_0=0$,终止时间$t_f=3pi$,初始条件$y|=0,y'|=0$ 分析:对方程进行降阶成一阶微分方程 令:(x_1=y,x_2=y'=x_1',x_2'=y'') 于是:(x_2'+x_1=1-frac{t^2}{2pi}) 故原微分方程化为: (x_2'+x_1=1-frac{t^2}{2pi}) (x_1'=x_2) 即: (x_1'=0x_1+x_2+0) (x_2'=-x_1+0x_2+(1-frac{t^2}{2pi})) 写成矩阵形式: 1525539237341 解:1)编写函数文件exf.m

    function xdot=exf(t,x)
    u=1-(t.^2)/(2*pi);
    xdot=[0,1;-1,0]*x+[0 ;1]*u;
    

    2)主程序如下:

    clf;
    t0=0;
    tf=3*pi;
    x0=[0;0];		%初始条件列向量
    [t,x]=ode23('exf',[t0,tf],x0)
    y=x(:,1); %[t,x]中求出的x是按列排列, 故用ode23求出x后 只要第一列即为y 
    y2=-1/2*(-2*pi-2+t.^2)/pi-(pi+1)/pi*cos(t);	%解析解
    plot(t,y,'-', t,y2,'o')
    

    注意解析解的求法: dsolve('D2y+y=1-t^2 /(2*pi)','y(0)=0,Dy(0)=0','t') ans = -1/2*(-2pi-2+t^2)/pi-(pi+1)/picos(t) ####作业:P168 24,27 24、求解析解。 y=dsolve('Dy=x*sin(x)/cos(y)','x') 27、用数值方法求解下列微分方程,并用不同颜色和线形将y和y'画在同一个图形窗口中: 初始时间:(t_0=0);终止时间:(t_f=pi);初始条件:(y|_{t=0}=0.1,y'|_{t=0}=0.2) 分析:略,看例2 解:1)编写函数文件exf.m

    function xdot=exf(t,x)
    u=1-2*t;
    xdot=[0,1;1,-t]*x+[0;1]*u;
    

    2)主程序如下:

    t0=0;
    tf=pi;
    x0t=[0.1;0.2];
    [t,x]=ode23('exf',[t0,tf],x0t);
    y=x(:,1);
    y2=x(:,2);
    plot(t,y,'-',t,y2,'o')
    legend('原函数','导数')
    

    ###L7 随机试验、统计分析、计算机模拟 #####随机试验 例1 随机试验:100个人的团体,生日各不相同、至少两人生日相同概率的分析

    for n=1:100
       p0(n)=prod(365:-1:365-n+1)/365^n;
       p1(n)=1-p0(n);
    end
    n=1:100;
    plot(n,p0,n,p1,'--')
    xlabel(‘人数’),ylabel(‘概率’)
    legend(‘生日各不相同的概率’,‘至少两人相同的概率’)
    axis([0 100 -0.1 1.1]),grid on
    

    #####统计作图 hist(s,k) 将_数组_ s的最大值最小值为端点的区间等分为k份 基本统计函数: | max(x) | min(x) | median(x) | range(x) | mean(x) | std(x) | var(x) | cov(x) | | ------ | ------ | --------- | -------- | ---------- | ---------- | -------- | ---------- | | 最大值 | 最小值 | 中值 | 极差 | 算术平均差 | 样本标准差 | 样本方差 | 协方差矩阵 | 例2 作课程成绩的频数表和直方图 解:(1)数据输入: 方法1:在Matlab的交互环境下直接输入; 方法2:将以上数据以一列的形式存为A.txt文件,用 load A.txt 命令读入数据 (2) 用hist命令作频数表和直方图:(区间个数为5,可省略) [N,X]=hist(A,5) 120名学生高数成绩的频数表; hist(A,5) 120名学生高数成绩的直方图;

    load A.txt
    disp('高数成绩的频数表'),[N,X]=hist(A,5)	%N为频数
    hist(A,5)	%直方图
    

    例3 求A的均值、中位数、极差、方差和标准差。 M=[mean(A),median(A),range(A),var(A),std(A)] #####概率分布 P174 表8-1 常见概率分布的期望和方差 P175 表8-2 概率分布的命令字符 表8-3 运算功能的命令字符 y=normpdf(x, mu, sigma) $mu=mu,sigma=sigma$的正态分布的密度函数 y=normpdf(x) 标准正态分布的密度函数 y=normcdf(x, mu, sigma) $mu=mu,sigma=sigma$的正态分布的分布函数 y=normcdf(x) 标准正态分布的分布函数 例4

    x=-6:0.01:6;
    y1=normpdf(x); 
    z1=normcdf(x);
    y2=normpdf(x, 0, 2);
    z2=normcdf(x, 0, 2);
    subplot(1, 2, 1),plot(x, y1, x, y2);
    legend('N(0,1)','N(0,2^2)')
    title('概率密度');
    subplot(1, 2, 2),plot(x, z1, x, z2);
    legend('N(0,1)','N(0,2^2)')
    title('概率分布');
    

    例4 某厂生产一种设备,其平均寿命为10年,标准差为2年.如该设备的寿命服从正态分布,求寿命不低于9年的设备占整批设备的比例? 分析:设随机变量$xi$为设备寿命,由题意$xi sim N(10,x^2)$ (P(xi ge 9)=1-P(xi le 9))

    p1=normcdf(9,10,2)
    1-p1
    

    #####计算机模拟 例 将一枚硬币抛掷 500 次, 各做 7 遍, 观察正面出现的次数及频率.程序如下:

    m=input(‘m=’)   %输入实验次数
    n=input(‘n=’)   %输入抛掷次数
    for j=1:m 	%外循环是实验次数
        k=0;	%记录正面出现次数
        d=0;	%记录反面出现次数
        x=round(rand(1,n))   %round()四舍五入 rand()生成1*n的随机数矩阵
      for i=1:n		%内循环是抛掷次数
           if x(i)==1
               k=k+1;
           else x(i)==0
               d=d+1;
           end
      end 
       p(j)=k; pl(j)=k/n  %正面次数及概率
       q(j)=d; ql(j)=d/n  %反面次数及概率
    end    
    

    例 模拟生日,同上,略。

  • 相关阅读:
    【P000-004】交易费计算系统,功能类规划
    【P000-003】交易费计算系统,从股票信息网络接口获取信息
    ASP页面的执行顺序
    Python ImportError: DLL load failed: %1 不是有效的 Win32 应用程序
    VSCode运行已有代码
    WPF MVVM-TreeView数据源添加了节点,UI没有刷新
    MapGIS二次开发注意事项
    把echarts嵌入winform窗口注意事项
    host is not allowed to connect mysql解决方法
    SqlDbx连接Oracle数据库
  • 原文地址:https://www.cnblogs.com/handy1998/p/9052627.html
Copyright © 2020-2023  润新知