郁闷的C小加(一)
时间限制:1000 ms | 内存限制:65535 KB
难度:3
- 描述
-
我们熟悉的表达式如a+b、a+b*(c+d)等都属于中缀表达式。中缀表达式就是(对于双目运算符来说)操作符在两个操作数中间:num1 operand num2。同理,后缀表达式就是操作符在两个操作数之后:num1 num2 operand。ACM队的“C小加”正在郁闷怎样把一个中缀表达式转换为后缀表达式,现在请你设计一个程序,帮助C小加把中缀表达式转换成后缀表达式。为简化问题,操作数均为个位数,操作符只有+-*/ 和小括号。
- 输入
- 第一行输入T,表示有T组测试数据(T<10)。 每组测试数据只有一行,是一个长度不超过1000的字符串,表示这个表达式。这个表达式里只包含+-*/与小括号这几种符号。其中小括号可以嵌套使用。数据保证输入的操作数中不会出现负数。并且输入数据不会出现不匹配现象。
- 输出
- 每组输出都单独成行,输出转换的后缀表达式。
- 样例输入
-
2 1+2 (1+2)*3+4*5
- 样例输出
-
12+ 12+3*45*+
题解:
百科:后缀表达式的解释:开始扫描;·数字时,加入后缀表达式;·运算符:a. 若为 '(',入栈;b. 若为 ')',则依次把栈中的的运算符加入后缀表达式中,直到出现'(',从栈中删除'(' ;c. 若为 除括号外的其他运算符, 当其优先级高于除'('以外的栈顶运算符时,直接入栈。否则从栈顶开始,依次弹出比当前处理的运算符优先级高和优先级相等的运算符,直到一个比它优先级低的或者遇到了一个左括号为止。·当扫描的中缀表达式结束时,栈中的的所有运算符出栈;代码:#include<cstdio> #include<iostream> #include<cmath> #include<algorithm> #include<cstring> #include<queue> #include<stack> using namespace std; const int INF=0x3f3f3f3f; #define mem(x,y) memset(x,y,sizeof(x)) #define SI(x) scanf("%d",&x) #define PI(x) printf("%d",x) typedef long long LL; const int MAXN=1010; char s[MAXN]; char work(char a,char b){ if(a=='+'||a=='-'){ if(b=='*'||b=='/'||b=='(')return '<'; else return '>'; } if(a=='*'||a=='/'){ if(b=='(')return '<'; else return '>'; } if(a=='('&&b==')')return '='; if(a=='#'||a=='(')return '<'; return '>'; } int main(){ int T; SI(T); while(T--){ scanf("%s",s); stack<char>S; S.push('#'); for(int i=0;s[i];){ if(isdigit(s[i])||s[i]=='.') printf("%c",s[i++]); else{ switch(work(S.top(),s[i])){ case '<': S.push(s[i]); i++; break; case '>': printf("%c",S.top()); S.pop(); break; case '=': S.pop(); i++; break; } } } while(S.size()>1)printf("%c",S.top()),S.pop(); puts(""); } return 0; }