• DataWhale 动手学深度学习PyTorch版-task1:线性回归与SOFTMAX


    课程引用自伯禹平台:https://www.boyuai.com/elites/course/cZu18YmweLv10OeV

    《动手学深度学习》官方网址:http://zh.gluon.ai/ ——面向中文读者的能运行、可讨论的深度学习教科书。

    Task 1: 线性回归、Softmax与分类

    课程详细内容在https://www.boyuai.com/elites/course/cZu18YmweLv10OeV/jupyter/FUT2TsxGNn4g4JY1ayb1W

    (Task2 RNN模型: https://www.cnblogs.com/haiyanli/p/12309289.html

    这里记录个别内容;

    #以前未注意矢量计算

    1. 矢量计算

    在模型训练或预测时,我们常常会同时处理多个数据样本并用到矢量计算。在介绍线性回归的矢量计算表达式之前,让我们先考虑对两个向量相加的两种方法。

    1. 向量相加的一种方法是,将这两个向量按元素逐一做标量加法。
    2. 向量相加的另一种方法是,将这两个向量直接做矢量加法。
    代码示例:import torch
    import time
    # init variable a, b as 1000 dimension vector
    n = 1000
    a = torch.ones(n)
    b = torch.ones(n)
    # define a timer class to record time
    class Timer(object):
        """Record multiple running times."""
        def __init__(self):
            self.times = []
            self.start()
    
        def start(self):
            # start the timer
            self.start_time = time.time()
    
        def stop(self):
            # stop the timer and record time into a list
            self.times.append(time.time() - self.start_time)
            return self.times[-1]
    
        def avg(self):
            # calculate the average and return
            return sum(self.times)/len(self.times)
    
        def sum(self):
            # return the sum of recorded time
            return sum(self.times)
    
    测试:
    timer = Timer()
    c = torch.zeros(n)
    for i in range(n):
        c[i] = a[i] + b[i]
    '%.5f sec' % timer.stop()
    
     下面是使用torch来将两个向量直接做矢量加法:
    timer.start()
    d = a + b
    '%.5f sec' % timer.stop()

    运行后结果很明显,后者比前者运算速度更快。因此,我们应该尽可能采用矢量计算,以提升计算效率。

    2、借鉴平台的Pytorch代码学习,多看,多练

    import torch
    from torch import nn
    import numpy as np
    torch.manual_seed(1)

    #generate data
    num_inputs = 2
    num_examples = 1000

    true_w = [2, -3.4]
    true_b = 4.2

    features = torch.tensor(np.random.normal(0, 1, (num_examples, num_inputs)), dtype=torch.float)
    labels = true_w[0] * features[:, 0] + true_w[1] * features[:, 1] + true_b
    labels += torch.tensor(np.random.normal(0, 0.01, size=labels.size()), dtype=torch.float)

    #load data
    import torch.utils.data as Data

    batch_size = 10

    # combine featues and labels of dataset
    dataset = Data.TensorDataset(features, labels)

    # put dataset into DataLoader
    data_iter = Data.DataLoader(
    dataset=dataset, # torch TensorDataset format
    batch_size=batch_size, # mini batch size
    shuffle=True, # whether shuffle the data or not
    num_workers=0, # read data in multithreading
    )

    #define module
    class LinearNet(nn.Module):
    def __init__(self, n_feature):
    super(LinearNet, self).__init__() # call father function to init
    self.linear = nn.Linear(n_feature, 1) # function prototype: `torch.nn.Linear(in_features, out_features, bias=True)`

    def forward(self, x):
    y = self.linear(x)
    return y
    #load net
    net = LinearNet(num_inputs)
    print(net)

    #define loss
    loss = nn.MSELoss()

    #define optimizer
    import torch.optim as optim
    optimizer = optim.SGD(net.parameters(), lr=0.03) # built-in random gradient descent function
    #train
    num_epochs = 3
    for epoch in range(1, num_epochs + 1):
    for X, y in data_iter:
    output = net(X)
    l = loss(output, y.view(-1, 1))
    optimizer.zero_grad() # reset gradient, equal to net.zero_grad()
    l.backward()
    optimizer.step()
    print('epoch %d, loss: %f' % (epoch, l.item()))

    #view para
    for param in net.parameters():
    print(param)

    3、Softmax解决的神经网络输出带来的问题(来自课程内容)

  • 相关阅读:
    创建zabbix监控,添加监控机(server、agent、windows)
    KVM虚拟化平台简介及环境部署
    利用nginx的stream模块实现内网端口的转发代理
    Mysql主主同步+keepalived实现高可用
    基于 MHA 的 MySQL 高可用方案
    mysql基于Amoeba(变形虫)实现读写分离
    mysql主从异步复制
    基于mysqld_multi实现MySQL多实例多进程配置
    基于Haproxy+Keepalived构建高可用负载均衡集群
    yum 安装报错The GPG keys listed for the "CentOS-7
  • 原文地址:https://www.cnblogs.com/haiyanli/p/12308018.html
Copyright © 2020-2023  润新知