• 如何理解深度学习中的embedding?


    什么是深度学习里的Embedding?

    这个概念在深度学习领域最原初的切入点是所谓的Manifold Hypothesis(流形假设)。流形假设是指“自然的原始数据是低维的流形嵌入于(embedded in)原始数据所在的高维空间”。那么,深度学习的任务就是把高维原始数据(图像,句子)映射到低维流形,使得高维的原始数据被映射到低维流形之后变得可分,而这个映射就叫嵌入(Embedding)。比如Word Embedding,就是把单词组成的句子映射到一个表征向量。但后来不知咋回事,开始把低维流形的表征向量叫做Embedding,其实是一种误用。。。

    如果按照现在深度学习界通用的理解(其实是偏离了原意的),Embedding就是从原始数据提取出来的Feature,也就是那个通过神经网络映射之后的低维向量。

    什么是embedding?为什么说embedding是深度学习的基本操作?

    简单来说,embedding就是用一个低维的向量表示一个物体,可以是一个词,或是一个商品,或是一个电影等等。这个embedding向量的性质是能使距离相近的向量对应的物体有相近的含义,比如 Embedding(复仇者联盟)和Embedding(钢铁侠)之间的距离就会很接近,但 Embedding(复仇者联盟)和Embedding(乱世佳人)的距离就会远一些。

    除此之外Embedding甚至还具有数学运算的关系,比如Embedding(马德里)-Embedding(西班牙)+Embedding(法国)≈Embedding(巴黎)

    从另外一个空间表达物体,甚至揭示了物体间的潜在关系,上次体会这样神奇的操作还是在学习傅里叶变换的时候,从某种意义上来说,Embedding方法甚至具备了一些本体论的哲学意义。

    言归正传,Embedding能够用低维向量对物体进行编码还能保留其含义的特点非常适合深度学习。在传统机器学习模型构建过程中,我们经常使用one hot encoding对离散特征,特别是id类特征进行编码,但由于one hot encoding的维度等于物体的总数,比如阿里的商品one hot encoding的维度就至少是千万量级的。这样的编码方式对于商品来说是极端稀疏的,甚至用multi hot encoding对用户浏览历史的编码也会是一个非常稀疏的向量。而深度学习的特点以及工程方面的原因使其不利于稀疏特征向量的处理(这里希望大家讨论一下为什么?)。因此如果能把物体编码为一个低维稠密向量再喂给DNN,自然是一个高效的基本操作。

     


    链接:https://www.zhihu.com/question/38002635/answer/1382442522

  • 相关阅读:
    poj2661
    poj2624
    无法使用 mask和unmask,报错“对象不支持此属性或方法”
    document.getElementsByName("IPInput3").disabled=(id!=1); 操作无效的原因是应该为
    jquery获取input的值
    POST过来的数据,php中提示Undefined index
    jQuery插件之zTree
    jQuery插件之Smart spin
    jQuery插件开发全解析
    使用IE调试检查JavaScript的错误
  • 原文地址:https://www.cnblogs.com/h694879357/p/15501537.html
Copyright © 2020-2023  润新知