• Solve Tree Problems Recursively


    "Top-down" Solution

    Here is the pseudocode for the recursion function maximum_depth(root, depth):

    1. return if root is null
    2. if root is a leaf node:
    3.      answer = max(answer, depth)         // update the answer if needed
    4. maximum_depth(root.left, depth + 1)      // call the function recursively for left child
    5. maximum_depth(root.right, depth + 1)     // call the function recursively for right child
    

      

     code:
    int answer;		       // don't forget to initialize answer before call maximum_depth
    void maximum_depth(TreeNode* root, int depth) {
        if (!root) {
            return;
        }
        if (!root->left && !root->right) {
            answer = max(answer, depth);
        }
        maximum_depth(root->left, depth + 1);
        maximum_depth(root->right, depth + 1);
    }
    

      

    "Bottom-up" Solution

    1. return 0 if root is null                 // return 0 for null node
    2. left_depth = maximum_depth(root.left)
    3. right_depth = maximum_depth(root.right)
    4. return max(left_depth, right_depth) + 1  // return depth of the subtree rooted at root
    

      

    code:

    int maximum_depth(TreeNode* root) {
    	if (!root) {
    		return 0;                                 // return 0 for null node
    	}
    	int left_depth = maximum_depth(root->left);	
    	int right_depth = maximum_depth(root->right);
    	return max(left_depth, right_depth) + 1;	  // return depth of the subtree rooted at root
    }
    

      

    Conclusion.

    It is not easy to understand recursion and find out a recursion solution for the problem.

    When you meet a tree problem, ask yourself two questions: can you determine some parameters to help the node know the answer of itself? Can you use these parameters and the value of the node itself to determine what should be the parameters parsing to its children? If the answers are both yes, try to solve this problem using a "top-down" recursion solution.

    Or you can think the problem in this way: for a node in a tree, if you know the answer of its children, can you calculate the answer of the node? If the answer is yes, solving the problem recursively from bottom up might be a good way.

    In the following sections, we provide several classic problems for you to help you understand tree structure and recursion better.

    永远渴望,大智若愚(stay hungry, stay foolish)
  • 相关阅读:
    Oracle 备份与恢复 15 个典型问题
    Oracle Rman 增量备份与差异备份
    Oracle top 查询TOP SQL
    Oracle 将另外一张表的列更新到本表的列
    Mysql Innodb 表碎片整理
    python Django 之 Model ORM inspectdb(数据库表反向生成)
    MySQL 5.6比较重要的参数,以及5.5到5.6默认值有过变化的参数
    Python Django 前后端数据交互 之 HttpRequest、HttpResponse、render、redirect
    HTML(一)基础
    Python Django 前后端数据交互 之 HTTP协议下GET与POST的区别
  • 原文地址:https://www.cnblogs.com/h-hkai/p/9996766.html
Copyright © 2020-2023  润新知