这类最优化问题的本质是决策一个点选还是不选.
那么,我们可以用最小割帮我们决策到底选还是不选(因为最小割的本质是将元素划分成两个集合的最小代价)
然后每条边显然有断开的代价,描述出代价的关系和差量题就做出来了.
code:
#include <cstdio> #include <cstring> #include <string> #include <queue> #include <vector> #define N 1002 #define ll long long #define setIO(s) freopen(s".in","r",stdin) using namespace std; namespace net { #define inf 1000000 struct Edge { int u,v; ll c; Edge(int u=0,int v=0,ll c=0):u(u),v(v),c(c){} }; queue<int>q; vector<Edge>edges; vector<int>G[N]; int vv[N],vis[N],d[N],s,t; void add(int u,int v,ll c) { edges.push_back(Edge(u,v,c)); edges.push_back(Edge(v,u,0)); int o=edges.size(); G[u].push_back(o-2); G[v].push_back(o-1); } ll dfs(int x,ll cur) { if(x==t) return cur; ll an=0,flow=0; for(int i=vv[x];i<G[x].size();++i,++vv[x]) { Edge e=edges[G[x][i]]; if(e.c>0&&d[e.v]==d[x]+1) { an=dfs(e.v,min(cur,e.c)); if(an) { cur-=an; flow+=an; edges[G[x][i]].c-=an; edges[G[x][i]^1].c+=an; if(!cur) break; } } } return flow; } int bfs() { memset(vis,0,sizeof(vis)); d[s]=0; vis[s]=1; q.push(s); while(!q.empty()) { int u=q.front(); q.pop(); for(int i=0;i<G[u].size();++i) { if(edges[G[u][i]].c>0) { int v=edges[G[u][i]].v; if(!vis[v]) { vis[v]=1; d[v]=d[u]+1; q.push(v); } } } } return vis[t]; } ll maxflow() { ll re=0; while(bfs()) { memset(vv,0,sizeof(vv)); re+=(ll)dfs(s,inf); } return re; } }; ll Sum[N]; int a[N],e[N][N]; int main() { // setIO("input"); int n; ll sum=0; scanf("%d",&n); for(int i=1;i<=n;++i) scanf("%d",&a[i]); int s=0,t=n+1; for(int i=1;i<=n;++i) net::add(s,i,a[i]); for(int i=1;i<=n;++i) { for(int j=1;j<=n;++j) { scanf("%d",&e[i][j]); Sum[i]+=e[i][j]; sum+=e[i][j]; if(e[i][j]) net::add(i,j,e[i][j]<<1); } net::add(i,t,Sum[i]); } net::s=s,net::t=t; printf("%lld ",sum-net::maxflow()); return 0; }