Design a data structure that supports all following operations in average O(1) time.
Note: Duplicate elements are allowed.
insert(val)
: Inserts an item val to the collection.remove(val)
: Removes an item val from the collection if present.getRandom
: Returns a random element from current collection of elements. The probability of each element being returned is linearly related to the number of same value the collection contains.
Example:
// Init an empty collection. RandomizedCollection collection = new RandomizedCollection(); // Inserts 1 to the collection. Returns true as the collection did not contain 1. collection.insert(1); // Inserts another 1 to the collection. Returns false as the collection contained 1. Collection now contains [1,1]. collection.insert(1); // Inserts 2 to the collection, returns true. Collection now contains [1,1,2]. collection.insert(2); // getRandom should return 1 with the probability 2/3, and returns 2 with the probability 1/3. collection.getRandom(); // Removes 1 from the collection, returns true. Collection now contains [1,2]. collection.remove(1); // getRandom should return 1 and 2 both equally likely. collection.getRandom();
Approach #1: C++.
class RandomizedCollection { public: /** Initialize your data structure here. */ RandomizedCollection() { } /** Inserts a value to the collection. Returns true if the collection did not already contain the specified element. */ bool insert(int val) { auto result = m.find(val) == m.end(); m[val].push_back(nums.size()); nums.push_back(pair<int, int>(val, m[val].size() - 1)); return result; } /** Removes a value from the collection. Returns true if the collection contained the specified element. */ bool remove(int val) { if (!m.count(val)) return false; else { auto last = nums.back(); m[last.first][last.second] = m[val].back(); nums[m[val].back()] = last; m[val].pop_back(); if (m[val].empty()) m.erase(val); nums.pop_back(); return true; } } /** Get a random element from the collection. */ int getRandom() { return nums[rand() % nums.size()].first; } private: vector<pair<int, int>> nums; unordered_map<int, vector<int>> m; }; /** * Your RandomizedCollection object will be instantiated and called as such: * RandomizedCollection obj = new RandomizedCollection(); * bool param_1 = obj.insert(val); * bool param_2 = obj.remove(val); * int param_3 = obj.getRandom(); */
In this solution we use vector<pair<int, int>> nums to resoter the numbers in the set, using the unordered_map<int, vector<int>> to restore the position of the number.
Runtime: 36 ms, faster than 82.83% of C++ online submissions for Insert Delete GetRandom O(1) - Duplicates allowed.