• 874. Walking Robot Simulation


    A robot on an infinite grid starts at point (0, 0) and faces north.  The robot can receive one of three possible types of commands:

    • -2: turn left 90 degrees
    • -1: turn right 90 degrees
    • 1 <= x <= 9: move forward x units

    Some of the grid squares are obstacles. 

    The i-th obstacle is at grid point (obstacles[i][0], obstacles[i][1])

    If the robot would try to move onto them, the robot stays on the previous grid square instead (but still continues following the rest of the route.)

    Return the square of the maximum Euclidean distance that the robot will be from the origin.

    Example 1:

    Input: commands = [4,-1,3], obstacles = []
    Output: 25
    Explanation: robot will go to (3, 4)
    

    Example 2:

    Input: commands = [4,-1,4,-2,4], obstacles = [[2,4]]
    Output: 65
    Explanation: robot will be stuck at (1, 4) before turning left and going to (1, 8)
    

    Note:

    1. 0 <= commands.length <= 10000
    2. 0 <= obstacles.length <= 10000
    3. -30000 <= obstacle[i][0] <= 30000
    4. -30000 <= obstacle[i][1] <= 30000
    5. The answer is guaranteed to be less than 2 ^ 31.

    Approach #1: C++.

    class Solution {
    public:
        int robotSim(vector<int>& commands, vector<vector<int>>& obstacles) {
            vector<pair<int, int>> dirs = {{0, 1}, {1, 0}, {0, -1}, {-1, 0}};
            int x = 0, y = 0, di = 0;
            int ans = 0;
            
            set<pair<int, int>> obstacleSet;
            for (auto obstacle : obstacles) 
                obstacleSet.insert(make_pair(obstacle[0], obstacle[1]));
            
            for (int command : commands) {
                if (command == -2) {
                    di = (di + 3) % 4;
                } else if (command == -1) {
                    di = (di + 1) % 4;
                } else {
                    for (int i = 0; i < command; ++i) {
                        int nx = x + dirs[di].first;
                        int ny = y + dirs[di].second;
                        if (obstacleSet.find(make_pair(nx, ny)) == obstacleSet.end()) {
                            x = nx;
                            y = ny;
                            ans = max(ans, x*x + y*y);
                        }
                    }
                }
            }
            return ans;
        }
    };
    

      

    Analysis:

    If we know the relation of the directions and turn, it will become easier.

    永远渴望,大智若愚(stay hungry, stay foolish)
  • 相关阅读:
    因文件夹取名为system才导致的错误
    如何排除一些不需要SVN版本管理的文件和目录
    ext
    svn忽略文件和文件夹
    TortoiseSVN设置忽略的文件类型或文件夹
    X++学习(一)
    X++学习(三)
    X++学习(二)
    X++学习(四)
    X++学习(五)
  • 原文地址:https://www.cnblogs.com/h-hkai/p/10311975.html
Copyright © 2020-2023  润新知