• 787. Cheapest Flights Within K Stops


    There are n cities connected by m flights. Each fight starts from city and arrives at v with a price w.

    Now given all the cities and flights, together with starting city src and the destination dst, your task is to find the cheapest price from src to dst with up to k stops. If there is no such route, output -1.

    Example 1:
    Input: 
    n = 3, edges = [[0,1,100],[1,2,100],[0,2,500]]
    src = 0, dst = 2, k = 1
    Output: 200
    Explanation: 
    The graph looks like this:
    

    The cheapest price from city 0 to city 2 with at most 1 stop costs 200, as marked red in the picture.
    Example 2:
    Input: 
    n = 3, edges = [[0,1,100],[1,2,100],[0,2,500]]
    src = 0, dst = 2, k = 0
    Output: 500
    Explanation: 
    The graph looks like this:
    

    The cheapest price from city 0 to city 2 with at most 0 stop costs 500, as marked blue in the picture.

    Note:

    • The number of nodes n will be in range [1, 100], with nodes labeled from 0 to n - 1.
    • The size of flights will be in range [0, n * (n - 1) / 2].
    • The format of each flight will be (src, dst, price).
    • The price of each flight will be in the range [1, 10000].
    • k is in the range of [0, n - 1].
    • There will not be any duplicated flights or self cycles.

    Approach #1: C++. []DFS

    class Solution {
    public:
        int findCheapestPrice(int n, vector<vector<int>>& flights, int src, int dst, int K) {
            unordered_map<int, vector<pair<int, int>>> graph;
            for (auto flight : flights) {
                int s = flight[0], e = flight[1], p = flight[2];
                graph[s].push_back(make_pair(e, p));
            }
            unordered_set<int> seen;
            dfs(graph, seen, src, dst, K, 0, 0);
            return ans == INT_MAX ? -1 : ans;
        }
        
        void dfs(unordered_map<int, vector<pair<int, int>>>& graph, unordered_set<int> seen, int src, int dst, int K, int t, int p) {
            if (t > K+1) return ;
            if (src == dst) {
                ans = p;
                return ;
            }
            
            seen.insert(src);
            
            for (auto v : graph[src]) 
                if (!seen.count(v.first) && p + v.second < ans) 
                    dfs(graph, seen, v.first, dst, K, t+1, p+v.second);
    
        }
        
    private:
        int ans = INT_MAX;
        
    };
    

      

    Analysis:

    In this solution, The important point is p + v.second < ans.  

    永远渴望,大智若愚(stay hungry, stay foolish)
  • 相关阅读:
    AJAX异步传输——以php文件传输为例
    js控制json生成菜单——自制菜单(一)
    vs2010中关于HTML控件与服务器控件分别和js函数混合使用的问题
    SQL数据库连接到服务器出错——无法连接到XXX
    PHP错误:Namespace declaration statement has to be the very first statement in the script
    【LeetCode】19. Remove Nth Node From End of List
    【LeetCode】14. Longest Common Prefix
    【LeetCode】38. Count and Say
    【LeetCode】242. Valid Anagram
    【LeetCode】387. First Unique Character in a String
  • 原文地址:https://www.cnblogs.com/h-hkai/p/10160736.html
Copyright © 2020-2023  润新知