Given a binary tree, determine if it is a valid binary search tree (BST).
Assume a BST is defined as follows:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than the node's key.
- Both the left and right subtrees must also be binary search trees.
Example 1:
Input: 2 / 1 3 Output: true
Example 2:
5 / 1 4 / 3 6 Output: false Explanation: The input is: [5,1,4,null,null,3,6]. The root node's value is 5 but its right child's value is 4.
Approach #1: C++.
/** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: bool isValidBST(TreeNode* root) { vector<int> inorderTraverseArray; inorder(root, inorderTraverseArray); for (int i = 1; i < inorderTraverseArray.size(); ++i) { if (inorderTraverseArray[i-1] >= inorderTraverseArray[i]) return false; } return true; } private: void inorder(TreeNode* root, vector<int>& inorderTraverseArray) { if (root == NULL) return ; if (root->left != NULL) inorder(root->left, inorderTraverseArray); inorderTraverseArray.push_back(root->val); if (root->right != NULL) inorder(root->right, inorderTraverseArray); } };
Approach #2: Java.
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ class Solution { public boolean isValidBST(TreeNode root) { return isValidBST(root, Long.MIN_VALUE, Long.MAX_VALUE); } public boolean isValidBST(TreeNode root, long minVal, long maxVal) { if (root == null) return true; if (root.val >= maxVal || root.val <= minVal) return false; return isValidBST(root.left, minVal, root.val) && isValidBST(root.right, root.val, maxVal); } }
Approach #3: Python.
# Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution(object): def isValidBST(self, root): """ :type root: TreeNode :rtype: bool """ output = [] self.solve(root, output) for i in range(1, len(output)): if output[i-1] >= output[i]: return False return True def solve(self, root, output): if root == None: return self.solve(root.left, output) output.append(root.val) self.solve(root.right, output)