• 机器学习之BP神经网络


    import random
    import math
    
    #神经元的定义
    class Neuron:
        def __init__(self,bias):
            self.bias = bias
            self.weights = []
    
        def calculate_output(self,inputs):
            self.inputs = inputs;
            self.output = self.squash(self.calculate_tocal_net_input())
            return self.output
    
        def calculate_tocal_net_input(self):
            total = 0
            for i in range(len(self.inputs)):
                total += self.inputs[i] * self.weights[i]
            return total + self.bias
    
        #激活函数sigmoid
        def squash(self,total_net_input):
            return 1/(1+math.exp(-total_net_input))
        #每一个神经元的误差是由平方差公式计算的
        def calculate_error(self,target_output):
            return 0.5 * (target_output - self.output) ** 2
    
        def calculate_pd_error_wrt_output(self, target_output):
            return -(target_output - self.output)
    
        def calculate_pd_total_net_input_wrt_input(self):
            return self.output * (1 - self.output)
    
        def calculate_pd_error_wrt_total_net_input(self, target_output):
            return self.calculate_pd_error_wrt_output(target_output) * self.calculate_pd_total_net_input_wrt_input()
    
        def calculate_pd_total_net_input_wrt_weight(self, index):
            return self.inputs[index]
    
    #
    # 参数解释:
    # "pd_" :偏导的前缀
    # "d_" :导数的前缀
    # "w_ho" :隐含层到输出层的权重系数索引
    # "w_ih" :输入层到隐含层的权重系数的索引
    
    class NeuronLayer:
        def __init__(self, num_neurons,bias):
            #同一层的神经元共享一个截距项b
            self.bias = bias if bias else random.random()
            self.neurons = []
            for i in range(num_neurons):
                self.neurons.append(Neuron(self.bias))
        def inspect(self):
            print('Neurons:',len(self.neurons))
            for n in range(len(self.neurons)):
                print(' Neuron',n)
                for w in range(len(self.neurons[n].weights)):
                    print('  Weight:',self.neurons[n].weights[w])
                print(' Bias:',self.bias)
    
        def feed_forward(self,inputs):
            outputs = []
            for neuron in self.neurons:
                outputs.append(neuron.calculate_output(inputs))
            return outputs
        def get_outputs(self):
            outputs =[]
            for neuron in self.neurons:
                outputs.append(neuron.output)
            return outputs
    
    class NeuralNetwork:
        #学习率
        LEARNING_RATE = 0.5
        def __init__(self, num_inputs, num_hidden, num_outputs, hidden_layer_weights=None, hidden_layer_bias=None,output_layer_weights=None, output_layer_bias=None):
            self.num_inputs = num_inputs
            self.hidden_layer = NeuronLayer(num_hidden, hidden_layer_bias)
            self.output_layer = NeuronLayer(num_outputs, output_layer_bias)
            self.init_weights_from_inputs_to_hidden_layer_neurons(hidden_layer_weights)
            self.init_weights_from_hidden_layer_neurons_to_output_layer_neurons(output_layer_weights)
    
        def init_weights_from_inputs_to_hidden_layer_neurons(self, hidden_layer_weights):
            weight_num = 0
            for h in range(len(self.hidden_layer.neurons)):
                for i in range(self.num_inputs):
                    if not hidden_layer_weights:
                        self.hidden_layer.neurons[h].weights.append(random.random())
                    else:
                        self.hidden_layer.neurons[h].weights.append(hidden_layer_weights[weight_num])
                    weight_num += 1
    
        def init_weights_from_hidden_layer_neurons_to_output_layer_neurons(self, output_layer_weights):
            weight_num = 0
            for o in range(len(self.output_layer.neurons)):
                for h in range(len(self.hidden_layer.neurons)):
                    if not output_layer_weights:
                        self.output_layer.neurons[o].weights.append(random.random())
                    else:
                        self.output_layer.neurons[o].weights.append(output_layer_weights[weight_num])
                    weight_num += 1
    
        def inspect(self):
            print('------')
            print('* Inputs: {}'.format(self.num_inputs))
            print('------')
            print('Hidden Layer')
            self.hidden_layer.inspect()
            print('------')
            print('* Output Layer')
            self.output_layer.inspect()
            print('------')
    
        def feed_forward(self, inputs):
            hidden_layer_outputs = self.hidden_layer.feed_forward(inputs)
            return self.output_layer.feed_forward(hidden_layer_outputs)
    
        def train(self, training_inputs, training_outputs):
            self.feed_forward(training_inputs)
            # 1. 输出神经元的值
            pd_errors_wrt_output_neuron_total_net_input = [0] * len(self.output_layer.neurons)
            for o in range(len(self.output_layer.neurons)):
                # ∂E/∂zⱼ
                pd_errors_wrt_output_neuron_total_net_input[o] = self.output_layer.neurons[o].calculate_pd_error_wrt_total_net_input(training_outputs[o])
            # 2. 隐含层神经元的值
            pd_errors_wrt_hidden_neuron_total_net_input = [0] * len(self.hidden_layer.neurons)
            for h in range(len(self.hidden_layer.neurons)):
                # dE/dyⱼ = Σ ∂E/∂zⱼ * ∂z/∂yⱼ = Σ ∂E/∂zⱼ * wᵢⱼ
                d_error_wrt_hidden_neuron_output = 0
                for o in range(len(self.output_layer.neurons)):
                    d_error_wrt_hidden_neuron_output += pd_errors_wrt_output_neuron_total_net_input[o] * 
                                                        self.output_layer.neurons[o].weights[h]
                 # ∂E/∂zⱼ = dE/dyⱼ * ∂zⱼ/∂
                pd_errors_wrt_hidden_neuron_total_net_input[h] = d_error_wrt_hidden_neuron_output * 
                                                                 self.hidden_layer.neurons[h].calculate_pd_total_net_input_wrt_input()
    
            # 3. 更新输出层权重系数
            for o in range(len(self.output_layer.neurons)):
                for w_ho in range(len(self.output_layer.neurons[o].weights)):
                # ∂Eⱼ/∂wᵢⱼ = ∂E/∂zⱼ * ∂zⱼ/∂wᵢⱼ
                    pd_error_wrt_weight = pd_errors_wrt_output_neuron_total_net_input[o] * 
                                          self.output_layer.neurons[o].calculate_pd_total_net_input_wrt_weight(w_ho)
                     # Δw = α * ∂Eⱼ/∂wᵢ
                self.output_layer.neurons[o].weights[w_ho] -= self.LEARNING_RATE * pd_error_wrt_weight
            # 4. 更新隐含层的权重系数
            for h in range(len(self.hidden_layer.neurons)):
                for w_ih in range(len(self.hidden_layer.neurons[h].weights)):
                # ∂Eⱼ/∂wᵢ = ∂E/∂zⱼ * ∂zⱼ/∂wᵢ
                    pd_error_wrt_weight = pd_errors_wrt_hidden_neuron_total_net_input[h] *
                                          self.hidden_layer.neurons[h].calculate_pd_total_net_input_wrt_weight(w_ih)
                # Δw = α * ∂Eⱼ/∂wᵢ
                self.hidden_layer.neurons[h].weights[w_ih] -= self.LEARNING_RATE * pd_error_wrt_weight
    
        def calculate_total_error(self, training_sets):
            total_error = 0
            for t in range(len(training_sets)):
                training_inputs, training_outputs = training_sets[t]
            self.feed_forward(training_inputs)
            for o in range(len(training_outputs)):
                total_error += self.output_layer.neurons[o].calculate_error(training_outputs[o])
            return total_error
    
    
    
    
    nn = NeuralNetwork(2, 2, 2, hidden_layer_weights=[0.15, 0.2, 0.25, 0.3], hidden_layer_bias=0.35, output_layer_weights=[0.4, 0.45, 0.5, 0.55], output_layer_bias=0.6)
    for i in range(10000):
        nn.train([0.05, 0.1], [0.01, 0.09])
        print(i, round(nn.calculate_total_error([[[0.05, 0.1], [0.01, 0.09]]]), 9))
    

      

  • 相关阅读:
    编辑距离算法详解:Levenshtein Distance算法
    直方图均衡化
    Dev之ChartControl控件(二)— 绘制多重坐标图形
    SVM支持向量机算法
    Dev之ChartControl控件(一)
    KNN邻近分类算法
    广州.NET微软技术俱乐部提技术问题的正确方式
    .NET微软技术 开源项目建设
    广州.NET微软技术俱乐部与其他技术群的区别
    广州.NET微软技术俱乐部 微信群有用信息集锦
  • 原文地址:https://www.cnblogs.com/gylhaut/p/9072063.html
Copyright © 2020-2023  润新知