import random import math #神经元的定义 class Neuron: def __init__(self,bias): self.bias = bias self.weights = [] def calculate_output(self,inputs): self.inputs = inputs; self.output = self.squash(self.calculate_tocal_net_input()) return self.output def calculate_tocal_net_input(self): total = 0 for i in range(len(self.inputs)): total += self.inputs[i] * self.weights[i] return total + self.bias #激活函数sigmoid def squash(self,total_net_input): return 1/(1+math.exp(-total_net_input)) #每一个神经元的误差是由平方差公式计算的 def calculate_error(self,target_output): return 0.5 * (target_output - self.output) ** 2 def calculate_pd_error_wrt_output(self, target_output): return -(target_output - self.output) def calculate_pd_total_net_input_wrt_input(self): return self.output * (1 - self.output) def calculate_pd_error_wrt_total_net_input(self, target_output): return self.calculate_pd_error_wrt_output(target_output) * self.calculate_pd_total_net_input_wrt_input() def calculate_pd_total_net_input_wrt_weight(self, index): return self.inputs[index] # # 参数解释: # "pd_" :偏导的前缀 # "d_" :导数的前缀 # "w_ho" :隐含层到输出层的权重系数索引 # "w_ih" :输入层到隐含层的权重系数的索引 class NeuronLayer: def __init__(self, num_neurons,bias): #同一层的神经元共享一个截距项b self.bias = bias if bias else random.random() self.neurons = [] for i in range(num_neurons): self.neurons.append(Neuron(self.bias)) def inspect(self): print('Neurons:',len(self.neurons)) for n in range(len(self.neurons)): print(' Neuron',n) for w in range(len(self.neurons[n].weights)): print(' Weight:',self.neurons[n].weights[w]) print(' Bias:',self.bias) def feed_forward(self,inputs): outputs = [] for neuron in self.neurons: outputs.append(neuron.calculate_output(inputs)) return outputs def get_outputs(self): outputs =[] for neuron in self.neurons: outputs.append(neuron.output) return outputs class NeuralNetwork: #学习率 LEARNING_RATE = 0.5 def __init__(self, num_inputs, num_hidden, num_outputs, hidden_layer_weights=None, hidden_layer_bias=None,output_layer_weights=None, output_layer_bias=None): self.num_inputs = num_inputs self.hidden_layer = NeuronLayer(num_hidden, hidden_layer_bias) self.output_layer = NeuronLayer(num_outputs, output_layer_bias) self.init_weights_from_inputs_to_hidden_layer_neurons(hidden_layer_weights) self.init_weights_from_hidden_layer_neurons_to_output_layer_neurons(output_layer_weights) def init_weights_from_inputs_to_hidden_layer_neurons(self, hidden_layer_weights): weight_num = 0 for h in range(len(self.hidden_layer.neurons)): for i in range(self.num_inputs): if not hidden_layer_weights: self.hidden_layer.neurons[h].weights.append(random.random()) else: self.hidden_layer.neurons[h].weights.append(hidden_layer_weights[weight_num]) weight_num += 1 def init_weights_from_hidden_layer_neurons_to_output_layer_neurons(self, output_layer_weights): weight_num = 0 for o in range(len(self.output_layer.neurons)): for h in range(len(self.hidden_layer.neurons)): if not output_layer_weights: self.output_layer.neurons[o].weights.append(random.random()) else: self.output_layer.neurons[o].weights.append(output_layer_weights[weight_num]) weight_num += 1 def inspect(self): print('------') print('* Inputs: {}'.format(self.num_inputs)) print('------') print('Hidden Layer') self.hidden_layer.inspect() print('------') print('* Output Layer') self.output_layer.inspect() print('------') def feed_forward(self, inputs): hidden_layer_outputs = self.hidden_layer.feed_forward(inputs) return self.output_layer.feed_forward(hidden_layer_outputs) def train(self, training_inputs, training_outputs): self.feed_forward(training_inputs) # 1. 输出神经元的值 pd_errors_wrt_output_neuron_total_net_input = [0] * len(self.output_layer.neurons) for o in range(len(self.output_layer.neurons)): # ∂E/∂zⱼ pd_errors_wrt_output_neuron_total_net_input[o] = self.output_layer.neurons[o].calculate_pd_error_wrt_total_net_input(training_outputs[o]) # 2. 隐含层神经元的值 pd_errors_wrt_hidden_neuron_total_net_input = [0] * len(self.hidden_layer.neurons) for h in range(len(self.hidden_layer.neurons)): # dE/dyⱼ = Σ ∂E/∂zⱼ * ∂z/∂yⱼ = Σ ∂E/∂zⱼ * wᵢⱼ d_error_wrt_hidden_neuron_output = 0 for o in range(len(self.output_layer.neurons)): d_error_wrt_hidden_neuron_output += pd_errors_wrt_output_neuron_total_net_input[o] * self.output_layer.neurons[o].weights[h] # ∂E/∂zⱼ = dE/dyⱼ * ∂zⱼ/∂ pd_errors_wrt_hidden_neuron_total_net_input[h] = d_error_wrt_hidden_neuron_output * self.hidden_layer.neurons[h].calculate_pd_total_net_input_wrt_input() # 3. 更新输出层权重系数 for o in range(len(self.output_layer.neurons)): for w_ho in range(len(self.output_layer.neurons[o].weights)): # ∂Eⱼ/∂wᵢⱼ = ∂E/∂zⱼ * ∂zⱼ/∂wᵢⱼ pd_error_wrt_weight = pd_errors_wrt_output_neuron_total_net_input[o] * self.output_layer.neurons[o].calculate_pd_total_net_input_wrt_weight(w_ho) # Δw = α * ∂Eⱼ/∂wᵢ self.output_layer.neurons[o].weights[w_ho] -= self.LEARNING_RATE * pd_error_wrt_weight # 4. 更新隐含层的权重系数 for h in range(len(self.hidden_layer.neurons)): for w_ih in range(len(self.hidden_layer.neurons[h].weights)): # ∂Eⱼ/∂wᵢ = ∂E/∂zⱼ * ∂zⱼ/∂wᵢ pd_error_wrt_weight = pd_errors_wrt_hidden_neuron_total_net_input[h] * self.hidden_layer.neurons[h].calculate_pd_total_net_input_wrt_weight(w_ih) # Δw = α * ∂Eⱼ/∂wᵢ self.hidden_layer.neurons[h].weights[w_ih] -= self.LEARNING_RATE * pd_error_wrt_weight def calculate_total_error(self, training_sets): total_error = 0 for t in range(len(training_sets)): training_inputs, training_outputs = training_sets[t] self.feed_forward(training_inputs) for o in range(len(training_outputs)): total_error += self.output_layer.neurons[o].calculate_error(training_outputs[o]) return total_error nn = NeuralNetwork(2, 2, 2, hidden_layer_weights=[0.15, 0.2, 0.25, 0.3], hidden_layer_bias=0.35, output_layer_weights=[0.4, 0.45, 0.5, 0.55], output_layer_bias=0.6) for i in range(10000): nn.train([0.05, 0.1], [0.01, 0.09]) print(i, round(nn.calculate_total_error([[[0.05, 0.1], [0.01, 0.09]]]), 9))