• [转]Java7中的ForkJoin并发框架初探(下)—— ForkJoin的应用


    详见: http://blog.yemou.net/article/query/info/tytfjhfascvhzxcytp86

     

    前两篇文章已经对Fork Join的设计和JDK中源码的简要分析。这篇文章,我们来简单地看看我们在开发中怎么对JDK提供的工具类进行应用,以提高我们的需求处理效率。

    Fork Join这东西确实用好了能给我们的任务处理提高效率,也为开发带来方便。但Fork Join不是那么容易用好的,我们先来看几个例子(反例)。

    0. 反例错误分析

    我们先来看看这篇文章中提供的例子:http://www.iteye.com/topic/643724 (因为是反例,就不提供超链接了,只以普通文本给出URL)

    这篇文章是我学习和整理Fork Join时搜索到的一篇文章,其实总的来说这篇文章前面分析得还是比较好的,只是给出的第一个例子(有返回结果的RecursiveTask应用的例子)没有正确地对Fork Join进行应用。为了方便分析,还是贴下这个例子中具体的的代码吧。

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    public class Calculator extends RecursiveTask {
     
        private static final int THRESHOLD = 100;
        private int start;
        private int end;
     
        public Calculator(int start, int end) {
            this.start = start;
            this.end = end;
        }
     
        @Override
        protected Integer compute() {
            int sum = 0;
            if((start - end) < THRESHOLD){
                for(int i = start; i< end;i++){
                    sum += i;
                }
            }else{
                int middle = (start + end) /2;
                Calculator left = new Calculator(start, middle);
                Calculator right = new Calculator(middle + 1, end);
                left.fork();
                right.fork();
     
                sum = left.join() + right.join();
            }
            return sum;
        }
     
    }

    我们看到其中一段已经高亮的代码,显示对两个子任务进行fork()调用,即分别提交给当前线程的任务队列,依次加到末尾。紧接着,又按照调用fork()的顺序执行两个子任务对象的join()方法。

    其实,这样就有一个问题,在每次迭代中,第一个子任务会被放到线程队列的倒数第二个位置,第二个子任务是最后一个位置。当执行join()调用的时候,由于第一个子任务不在队列尾而不能通过执行ForkJoinWorkerThread的unpushTask()方法取出任务并执行,线程最终只能挂起阻塞,等待通知。而Fork Join本来的做法是想通过子任务的合理划分,避免过多的阻塞情况出现。这样,这个例子中的操作就违背了Fork Join的初衷,每次子任务的迭代,线程都会因为第一个子任务的join()而阻塞,加大了代码运行的成本,提高了资源开销,不利于提高程序性能。

    除此之外,这段程序还是不能进入Fork Join的过程,因为还有一个低级错误。看下第15、16行代码的条件,就清楚了。按照逻辑,start必然是比end小的。这将导致所有任务都将以循环累加的方式完成,而不会执行fork()和join()。

    由此可见,Fork Join的使用还是要注意对其本身的理解和对开发过程中细节的把握的。我们看下JDK中RecursiveAction和RecursiveTask这两个类。

    1. RecursiveAction分析及应用实例

    这两个类都是继承了ForkJoinTask,本身给出的实现逻辑并不多不复杂,在JDK的类文件中,它的注释比源码还要多。我们可以看下它的实现代码。

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    public abstract class RecursiveAction extends ForkJoinTask<Void> {
        private static final long serialVersionUID = 5232453952276485070L;
     
        protected abstract void compute();
     
        public final Void getRawResult() { return null; }
     
        protected final void setRawResult(Void mustBeNull) { }
     
        protected final boolean exec() {
            compute();
            return true;
        }
    }

    我们看到其中两个方法是关于处理空返回值的方法。而exec方法则是调用了compute(),这个compute就是我们使用Fork Join时需要自己实现的逻辑。

    我们可以看下API中给出的一个最简单最具体的例子:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    class IncrementTask extends RecursiveAction {
       final long[] array; final int lo; final int hi;
       IncrementTask(long[] array, int lo, int hi) {
         this.array = array; this.lo = lo; this.hi = hi;
       }
       protected void compute() {
         if (hi - lo < THRESHOLD) {
           for (int i = lo; i < hi; ++i)
             array[i]++;
         }
         else {
           int mid = (lo + hi) >>> 1;
           invokeAll(new IncrementTask(array, lo, mid),
                     new IncrementTask(array, mid, hi));
         }
       }
     }

    大致的逻辑就是,对给定一个特定数组的某段,进行逐个加1的操作。我们看到else中的代码块,显示取一个lo和hi的中间值,此后分割成两个子任务,并进行invokeAll()调用。我们来看下继承自FutureTask的invokeAll()方法实现。很简单:

    1
    2
    3
    4
    5
    public static void invokeAll(ForkJoinTask<?> t1, ForkJoinTask<?> t2) {
        t2.fork();
        t1.invoke();
        t2.join();
    }

    对于参数中的两个子任务,对第二个子任务进行fork(),即放入线程对应队列的结尾,然后执行第一个子任务,再调用第二个子任务的join(),实际上就是跳转到第二个子任务,进行执行(当然如果不能执行,就需要阻塞等待了)。

    其实invokeAll()是个重载方法,同名的还有另外两个,基本逻辑都是一样的,我们拿出一个通用一点的来看一下:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    public static void invokeAll(ForkJoinTask<?>... tasks) {
        Throwable ex = null;
        int last = tasks.length - 1;
        for (int i = last; i >= 0; --i) {
            ForkJoinTask<?> t = tasks[i];
            if (t == null) {
                if (ex == null)
                    ex = new NullPointerException();
            }
            else if (i != 0)
                t.fork();
            else if (t.doInvoke() < NORMAL && ex == null)
                ex = t.getException();
        }
        for (int i = 1; i <= last; ++i) {
            ForkJoinTask<?> t = tasks[i];
            if (t != null) {
                if (ex != null)
                    t.cancel(false);
                else if (t.doJoin() < NORMAL && ex == null)
                    ex = t.getException();
            }
        }
        if (ex != null)
            UNSAFE.throwException(ex);
    }

    我们发现第一个子任务(i==0的情况)没有进行fork,而是直接执行,其余的统统先调用fork()放入任务队列,之后再逐一join()。其实我们注意到一个要点就是第一个任务不要fork()再join(),也就是上面中例子的错误所在,这样会造成阻塞,而不能充分利用Fork Join的特点,也就不能保证任务执行的性能。

    Oracle的JavaSE7 API中在RecursiveAction里还有一个更复杂的例子,是计算double数组平方和的,由于代码较长,就不列在这里了。总体思路和上面是一样的,额外增加了动态阈值的判断,感兴趣的想深入理解的可以到这里去参考一下。

    http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/RecursiveAction.html

    2. RecursiveTask简要说明

    其实说完了RecursiveAction,RecursiveTask可以用“同理”来解释。实现代码也很简单:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    public abstract class RecursiveTask<V> extends ForkJoinTask<V> {
        private static final long serialVersionUID = 5232453952276485270L;
     
        V result;
     
        protected abstract V compute();
     
        public final V getRawResult() {
            return result;
        }
     
        protected final void setRawResult(V value) {
            result = value;
        }
     
        protected final boolean exec() {
            result = compute();
            return true;
        }
     
    }

    我们看到唯一不同的是返回结果的处理,其余都可以和RecursiveAction一样使用。

    3. Fork Join应用小结

    Fork Join是为我们提供了一个非常好的“分而治之”思想的实现平台,并且在一定程度上实现了“变串行并发为并行”。但Fork Join不是万能的页不完全是通用的,对于可很好分解成子任务的场景,我们可以对其进行应用,更多时候要考虑需

  • 相关阅读:
    循环语句的基本使用
    创建一个可拖动的dom元素。
    JavaScript中的callee,caller,call,apply的使用
    两个数组去重的方法。
    利用setTimeout建立能捕捉鼠标多次点击和鼠标长按的事件处理程序。
    document.getElementByClassName()的使用和兼容老浏览器。
    jQuery .data()方法的运用。
    javascript对象的深拷贝。
    未来、
    linux上机作业
  • 原文地址:https://www.cnblogs.com/grefr/p/5046284.html
Copyright © 2020-2023  润新知