• 2019秋招复习笔记--八大经典排序算法的代码实现


    冒泡排序:

     1 //冒泡排序
     2 //时间复杂度为O(N^2),空间复杂度为O(N)
     3 public class BubbleSort {
     4     public static void bubbleSort(int[] arr) {
     5         if (arr.length == 0 || arr.length == 1) {
     6             return;
     7         } else {
     8 //            随着每轮比较的进行,都有一个大数沉到后面排好序,因此外层的循环长度应该递减
     9             for (int end = arr.length - 1; end > 0; end--) {
    10                 for (int i = 0; i < end; i++) {
    11                     if (arr[i] > arr[i + 1]) {
    12                         swap(arr, i, i + 1);
    13                     }
    14                 }
    15             }
    16         }
    17 
    18     }
    19 
    20     static void swap(int[] arr, int i, int j) {
    21 //        不利用第三个变量交换两变量的位置。1.a和同一个数异或运算两次得到a本身 2.异或运算满足交换律
    22         arr[j] = arr[j] ^ arr[i];
    23         arr[i] = arr[j] ^ arr[i];
    24         arr[j] = arr[j] ^ arr[i];
    25     }
    26 
    27     public static void main(String[] args) {
    28         int[] a = {2, 1, 7, 10, 3, 9, 5, 4, 6, 8};
    29         bubbleSort(a);
    30         for(int i:a)
    31             System.out.print(i+",");
    32     }
    33 }
    冒泡排序

    插入排序:

     1 //插入排序
     2 //复杂度和数据状况有关系,如果本来数组的有序性就比较好则复杂度低
     3 public class InsertSort {
     4     public static void insertSort(int[] arr) {
     5         if (arr == null || arr.length < 2) {
     6             return;
     7         } else {
     8             for (int i = 1; i < arr.length; i++) {
     9 //如果数组的有序性比较好,如1,2,3,4,5,则arr[j + 1] < arr[j]这个条件可以使得比较提前终止,
    10 //如果数组刚好是逆序的,如5,4,3,2,1,则需要从j一直比较到i=0;
    11                 for (int j = i - 1; j >= 0 && arr[j + 1] < arr[j]; j--) {
    12                     swap(arr, j, j + 1);
    13                 }
    14             }
    15         }
    16     }
    17 
    18     static void swap(int[] arr, int i, int j) {
    19         arr[j] = arr[j] ^ arr[i];
    20         arr[i] = arr[j] ^ arr[i];
    21         arr[j] = arr[j] ^ arr[i];
    22     }
    23 
    24     public static void main(String[] args) {
    25         int[] a = {2, 1, 7, 10, 3, 9, 5, 4, 6, 8};
    26         insertSort(a);
    27         for (int i : a)
    28             System.out.print(i + ",");
    29     }
    30 }
    插入排序

    选择排序:

     1 //选择排序
     2 //时间复杂度为O(N^2),空间复杂度为O(1)
     3 public class SelectionSort {
     4     public static void selectionSort(int[] arr) {
     5         if (arr == null || arr.length < 2) {
     6             return;
     7         } else {
     8 //            每轮都从未排序的数列中取出一个数,将其与后面所有未排序的数作比较,得到这些未排序数列里面的最小数,将它换到已排好序数列的后面,并扩大已排好序数列的范围。
     9             for (int i = 0; i < arr.length - 1; i++) {
    10                 int minIndex = i;
    11 //                i = 0作为第一个已排序列
    12                 for (int j = i + 1; j < arr.length; j++) {
    13                     minIndex = arr[j] < arr[minIndex] ? j : minIndex;
    14                 }
    15                 swap(arr, i, minIndex);
    16             }
    17         }
    18     }
    19 
    20     static void swap(int[] arr, int i, int j) {
    21 //        此处不能用异或来完成交换,因为如果i=j, 两个相同的数异或等于0,“arr[j] = arr[j] ^ arr[i]”会将arr[i]和arr[j]同时置为0,这样就丢失了所有信息。
    22 //        如果i和j不相等,但a[i]==a[j]是可以完成异或交换功能的,因为0和任何数异或等于其本身
    23 //        arr[j] = arr[j] ^ arr[i];
    24 //        arr[i] = arr[j] ^ arr[i];
    25 //        arr[j] = arr[j] ^ arr[i];
    26         int tmp = arr[i];
    27         arr[i] = arr[j];
    28         arr[j] = tmp;
    29     }
    30 
    31     public static void main(String[] args) {
    32         int[] a = {2, 1, 7, 10, 3, 9, 5, 4, 6, 8};
    33         selectionSort(a);
    34         for (int i : a)
    35             System.out.print(i + ",");
    36     }
    37 }
    选择排序

    归并排序:

     1 //归并排序
     2 //时间复杂度O(NlogN),空间复杂度O(N)
     3 //分治+外排的方法
     4 public class MergeSort {
     5     public static void mergeSort(int[] arr) {
     6         if (arr == null || arr.length < 2)
     7             return;
     8         else
     9             sortProcess(arr, 0, arr.length - 1);
    10     }
    11 
    12     private static void sortProcess(int[] arr, int L, int R) {
    13         if (L == R)
    14             return;
    15         else {
    16             int mid = L + ((R - L) >> 1);
    17 //            根据Master公式求其时间复杂度:
    18             sortProcess(arr, L, mid);//T(N/2)
    19             sortProcess(arr, mid + 1, R);//T(N/2)
    20             merge(arr, L, mid, R);//O(N)
    21 //            根据Master公式,其时间复杂度为T(N) = 2T(N/2)+O(N) = N*logN
    22         }
    23     }
    24 
    25     //融合两个有序数组,使之成为一个更大的有序数组的方法,叫做外排
    26     private static void merge(int[] arr, int l, int mid, int r) {
    27 //        空间复杂度O(体现在需要一个大小为数据量N的辅助数组help上)
    28         int[] help = new int[r - l + 1];
    29         int i = 0;
    30         int p1 = l;
    31         int p2 = mid + 1;
    32         while (p1 <= mid && p2 <= r)
    33             help[i++] = arr[p1]<=arr[p2]?arr[p1++]:arr[p2++];
    34 //        两个必有且只有一个越界
    35         while(p1<=mid)
    36             help[i++] = arr[p1++];
    37         while(p2<=r)
    38             help[i++] = arr[p2++];
    39 
    40         i = 0;
    41         while(l<=r)
    42             arr[l++] = help[i++];
    43     }
    44 
    45     public static void main(String[] args) {
    46         int[] a = {2, 1, 7, 10, 3, 9, 5, 4, 6, 8};
    47         mergeSort(a);
    48         for(int i:a)
    49             System.out.print(i+",");
    50     }
    51 }
    归并排序

    快速排序:

    import java.util.Arrays;
    
    //快排
    //时间复杂度最好为O(NlogN). 数组逆序的时候最差,时间复杂度为O(N^2),可以通过随机快排的方式使得其长期时间复杂度期望为O(N*logN)
    //空间复杂度最好为O(logN),数组逆序的时候最差,空间复杂度为O(N),额外空间主要是每次partition函数返回的二元数组造成的。
    //通过随机快排的方式使得其长期时间复杂度期望为O(NlogN)
    //所有递归函数都可以改为非递归版本,因为递归的本质行为是系统在帮我们压栈。改为非递归就是改成我们自己来压栈
    // 在工程上是不允许递归行为存在的,因为递归过深可能会导致系统栈爆满,系统不稳定。因此工程上的快排都是非递归版本实现的。
    //库函数都是高度优化过的
    public class QuickSort {
    
    
        static void quickSort(int[] arr, int L, int R) {
            if (L < R) {
    //            随机快排, 每次将中间随机一个数和数列最后一个元素交换位置,防止逆序数列产生差的结果
                swap(arr, L + (int) (Math.random() * (R - L + 1)), R);
                int[] p = partition(arr, L, R);
                quickSort(arr, L, p[0] - 1);
                quickSort(arr, p[1] + 1, R);
            }
        }
    
        //分隔函数,此函数以arr[R]上的元素为标准,把arr上L到R的元素调整成大于arr[R]的都放他左边,小于arr[R]的都放他右边
        //由于数组中可能有多个等于分隔标准的元素,这个函数的返回值时调整完毕时,这若干个等于分隔标准的元素的左边界下标和有边界下标。
        //当只有一个等于分隔标准的元素存在时,左边界 = 有边界 = 该元素下标
        static int[] partition(int[] arr, int L, int R) {
            int less = L - 1;//less表示小于分隔标准arr[R]的元素构成的区域的右边界
            int more = R;//more表示大于分隔标准arr[R]的元素构成的区域的左边界
            int cur = L;
            int base = arr[R];
    //        以arr[R]作为基准,有了随机快排,这里的arr[R]被重新洗牌
    //        这里一次性处理了大于基准等于基准和小于基准的三种情况,速度比传统快排要快--属于三路快排
            while (cur < more) {
                if (arr[cur] < base) {
                    // cur++,因为换到cur位置上的一定是比基准arr[R]小的数,直接将其扩到less范围去,且cur指向下一位置
                    swap(arr, ++less, cur++);
                } else if (arr[cur] > base) {
                    //交换到cur位置上的数大小位置,交换过去的数一定大于基准arr[R], 故more--,将其扩到more区域, 但cur位置不变
                    //因为从--more交换过来的元素大小不确定,还需要判断
                    swap(arr, --more, cur);
                } else {
                    //当前位置和基准arr[R]相等,不扩到less区域和more区域,放在相等区域
                    cur++;
                }
            }
            //最后将基准交换到more区域的下一位置
            swap(arr, more, R);
           // 返回相等区域下标,注意此时more位置上是交换过来的基准值,不用加1
            return new int[]{less + 1, more};
        }
    
        static void swap(int[] arr, int i, int j) {
            int tmp = arr[i];
            arr[i] = arr[j];
            arr[j] = tmp;
        }
    
        public static void main(String[] args) {
            int a[] = {49, 38, 65, 97, 76, 13, 27, 49};
            quickSort(a, 0, a.length - 1);
            System.out.println(Arrays.toString(a));
        }
    }
    快排

    堆排序:

    import java.util.Arrays;
    /*
    *堆就是用数组实现的二叉树,所有它没有使用父指针或者子指针。堆根据“堆属性”来排序,“堆属性”决定了树中节点的位置。
    * 堆分为两种:最大堆和最小堆,两者的差别在于节点的排序方式。
    
    在最大堆中,父节点的值比每一个子节点的值都要大。在最小堆中,父节点的值比每一个子节点的值都要小。这个属性对堆中
    的每一个节点都成立。
    建堆和调整的过程都要遵循堆的这个属性
    * */
    
    //堆排序
    //堆是完全二叉树
    //二叉树的底层可以用线性的结构来储存,也就是说可以用数组来储存一个二叉树,通过数组中下标的关系来表示这个堆。
    //设完全二叉树的一个节点在数组中的下标为i, 可以用简单二叉树来助记: 父节点1的左孩子是3-->2i+1, 右孩子是4-->2i+2;
    //则其父节点的下标应该为(i-1)/2,其左孩子节点应该是2*i+1, 其右孩子节点应该为2*i+2
    //特例法: 0 的左孩子是1,右孩子是2: 0 = (1-1)/2 = (2-1)/2; 2*0+1 = 0; 2*0+2=2;
    public class HeapSort {
        //先建堆(使用heapInsert将数组所有元素排成堆)
        //再输出,每次输出堆顶元素(把堆顶和堆尾交换),再使用heapify调整堆顶元素使之重新符合大根堆
        static void heapSort(int[] arr) {
            if (arr == null || arr.length < 2)
                return;
            else
                //堆插入
                for (int i = 0; i < arr.length; i++)
                    heapInsert(arr, i);
            //输出元素
            int heapSize = arr.length;//堆的大小等于数组的长度
            //交换堆顶和最后一个元素
            swap(arr, 0, --heapSize);
            while (heapSize > 0) {
                heapify(arr, 0, heapSize);
                swap(arr, 0, --heapSize);
            }
        }
    
        //本函数的作用将数组中位置为index的元素插入到堆中正确位置(对大根堆的任意节点,它都小于它的父节点)
        // --index位置的数不能比它的父节点大,如果比父节点大就交换它和父节点的位置
        static void heapInsert(int[] arr, int index) {
            while (arr[(index - 1) / 2] < arr[index]) {//如果index=0, -1/2=0是根节点
                swap(arr, index, (index - 1) / 2);
                index = (index - 1) / 2;
            }
    
        }
    
        //如果堆中有某个元素变小了(变得比它的字节点小了,因此不符合大根堆的性质了),就要将这个元素下沉以保持大根堆的属性
        //本函数的作用是当index位置上的元素变小了,就要调整它的位置保持大根堆。
        static void heapify(int[] arr, int index, int heapSize) {
            int left = index * 2 + 1;//在用数组存储的堆中,节点i的左孩子节点是2*i+1, 右节点是2*i+2;
            //这里heapSize是最后一个元素,做堆排的时候,因为是从堆顶交换来的最大值,所以重新heapify要把它排除在外;
            while (left < heapSize) {
                int largest = left + 1 < heapSize && arr[left + 1] > arr[left] ? left + 1 : left;
                largest = arr[index] > arr[largest] ? index : largest;
                if (largest == index)
                    break;
                swap(arr, largest, index);
                index = largest;
                left = index * 2 + 1;
            }
        }
    
        static void swap(int[] arr, int i, int j) {
            int tmp = arr[i];
            arr[i] = arr[j];
            arr[j] = tmp;
        }
    
        public static void main(String[] args) {
            int a[] = {49, 38, 65, 97, 76, 13, 27, 49};
            heapSort(a);
            System.out.println(Arrays.toString(a));
        }
    }
    堆排序

    希尔排序:

    基数排序:

    TALK IS CHEAP, SHOW ME THE CODE
  • 相关阅读:
    开发基于键值对形式的语言管理器LauguageManager
    基于Json(键值对)配置文件的配置管理器
    Unity换装效果
    技能冷却效果的制作
    c#中的反射
    委托和事件的区别
    字典
    有序列表
    链表

  • 原文地址:https://www.cnblogs.com/greatLong/p/10562405.html
Copyright © 2020-2023  润新知